scholarly journals Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity

2016 ◽  
Vol 554-555 ◽  
pp. 293-302 ◽  
Author(s):  
Xi Li ◽  
Yo Toma ◽  
Jagadeesh Yeluripati ◽  
Shinya Iwasaki ◽  
Sonoko D. Bellingrath-Kimura ◽  
...  
2021 ◽  
Vol 102 ◽  
pp. 105275
Author(s):  
Jiasheng Li ◽  
Xiaomin Guo ◽  
Xiaowei Chuai ◽  
Fangjian Xie ◽  
Feng Yang ◽  
...  

2007 ◽  
Vol 34 (1) ◽  
Author(s):  
Markus Reichstein ◽  
Dario Papale ◽  
Riccardo Valentini ◽  
Marc Aubinet ◽  
Christian Bernhofer ◽  
...  

2020 ◽  
Author(s):  
Marcos Fernández-Martínez ◽  
Jordi Sardans ◽  
Josep Peñuelas ◽  
Ivan Janssens

<p>Global change is affecting the capacity of terrestrial ecosystems to sequester carbon. While the effect of climate on ecosystem carbon balance has largely been explored, the role of other potentially important factors that may shift with global change, such as biodiversity and the concentration of nutrients remains elusive. More diverse ecosystems have been shown to be more productive and stable over time and differences in foliar concentrations of N and P are related to large differences in how primary producers function. Here, we used 89 eddy-covariance sites included in the FLUXNET 2015 database, from which we compiled information on climate, species abundance and elemental composition of the main species. With these data, we assessed the relative importance of climate, endogenous factors, biodiversity and community-weighted concentrations of foliar N and P on terrestrial carbon balance. Climate and endogenous factors, such as stand age, are the main determinants of terrestrial C balance and their interannual variability in all types of ecosystems. Elemental stoichiometry, though, played a significant role affecting photosynthesis, an effect that propagates through ecosystem respiration and carbon sequestration. Biodiversity, instead, had a very limited effect on terrestrial carbon balance. We found increased respiration rates and more stable gross primary production with increasing diversity. Our results are the first attempt to investigate the role of biodiversity and the elemental composition of terrestrial ecosystems in ecosystem carbon balance.</p>


2011 ◽  
Vol 141 (3-4) ◽  
pp. 342-349 ◽  
Author(s):  
Carmela B.M. Arevalo ◽  
Jagtar S. Bhatti ◽  
Scott X. Chang ◽  
Derek Sidders

2020 ◽  
Vol 26 (12) ◽  
pp. 7067-7078
Author(s):  
Marcos Fernández‐Martínez ◽  
Jordi Sardans ◽  
Talie Musavi ◽  
Mirco Migliavacca ◽  
Maitane Iturrate‐Garcia ◽  
...  

2019 ◽  
Vol 25 (10) ◽  
pp. 3334-3353 ◽  
Author(s):  
Benjamin M. Sleeter ◽  
David C. Marvin ◽  
D. Richard Cameron ◽  
Paul C. Selmants ◽  
A.LeRoy Westerling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document