eddy covariance
Recently Published Documents


TOTAL DOCUMENTS

1698
(FIVE YEARS 474)

H-INDEX

92
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Will S. Drysdale ◽  
Adam R. Vaughan ◽  
Freya A. Squires ◽  
Sam J. Cliff ◽  
Stefan Metzger ◽  
...  

Abstract. During March–June 2017 emissions of nitrogen oxides were measured via eddy covariance at the British Telecom Tower in central London, UK. Through the use of a footprint model the expected emissions were simulated from the spatially resolved National Atmospheric Emissions Inventory for 2017, and compared with the measured emissions. These simulated emissions were shown to underestimate measured emissions during the day time by a factor of 1.48, but they agreed well overnight. Furthermore, underestimations were spatially mapped and the areas around the measurement site responsible for differences in measured and simulated emissions inferred. It was observed that areas of higher traffic, such as major roads near national rail stations, showed the greatest underestimation by the simulated emissions. These discrepancies are partially attributed to a combination of the inventory not fully capturing traffic conditions in central London, and both spatial and temporal resolution of the inventory not fully describing the high heterogeneity of the urban centre. Understanding of this underestimation may further improved with longer measurement time series ,to better understand temporal variation, and improved temporal scaling factors, to better simulate sub-annual emissions.


2022 ◽  
Author(s):  
George Louis Vourlitis ◽  
Osvaldo Borges Pinto Jr. ◽  
Higo José Dalmagro ◽  
Paulo Arruda ◽  
Francisco de Almeida Lobo ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
pp. 95-115
Author(s):  
Xinhua Zhou ◽  
Tian Gao ◽  
Eugene S. Takle ◽  
Xiaojie Zhen ◽  
Andrew E. Suyker ◽  
...  

Abstract. Air temperature (T) plays a fundamental role in many aspects of the flux exchanges between the atmosphere and ecosystems. Additionally, knowing where (in relation to other essential measurements) and at what frequency T must be measured is critical to accurately describing such exchanges. In closed-path eddy-covariance (CPEC) flux systems, T can be computed from the sonic temperature (Ts) and water vapor mixing ratio that are measured by the fast-response sensors of a three-dimensional sonic anemometer and infrared CO2–H2O analyzer, respectively. T is then computed by use of either T=Ts1+0.51q-1, where q is specific humidity, or T=Ts1+0.32e/P-1, where e is water vapor pressure and P is atmospheric pressure. Converting q and e/P into the same water vapor mixing ratio analytically reveals the difference between these two equations. This difference in a CPEC system could reach ±0.18 K, bringing an uncertainty into the accuracy of T from both equations and raising the question of which equation is better. To clarify the uncertainty and to answer this question, the derivation of T equations in terms of Ts and H2O-related variables is thoroughly studied. The two equations above were developed with approximations; therefore, neither of their accuracies was evaluated, nor was the question answered. Based on first principles, this study derives the T equation in terms of Ts and the water vapor molar mixing ratio (χH2O) without any assumption and approximation. Thus, this equation inherently lacks error, and the accuracy in T from this equation (equation-computed T) depends solely on the measurement accuracies of Ts and χH2O. Based on current specifications for Ts and χH2O in the CPEC300 series, and given their maximized measurement uncertainties, the accuracy in equation-computed T is specified within ±1.01 K. This accuracy uncertainty is propagated mainly (±1.00 K) from the uncertainty in Ts measurements and a little (±0.02 K) from the uncertainty in χH2O measurements. An improvement in measurement technologies, particularly for Ts, would be a key to narrowing this accuracy range. Under normal sensor and weather conditions, the specified accuracy range is overestimated, and actual accuracy is better. Equation-computed T has a frequency response equivalent to high-frequency Ts and is insensitive to solar contamination during measurements. Synchronized at a temporal scale of the measurement frequency and matched at a spatial scale of measurement volume with all aerodynamic and thermodynamic variables, this T has advanced merits in boundary-layer meteorology and applied meteorology.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hu Yao ◽  
Haijun Peng ◽  
Bing Hong ◽  
Qian Guo ◽  
Hanwei Ding ◽  
...  

Peatlands are characterized by their large carbon storage capacity and play an essential role in the global carbon cycle. However, the future of the carbon stored in peatland ecosystems under a changing climate remains unclear. In this study, based on the eddy covariance technique, we investigated the net ecosystem CO2 exchange (NEE) and its controlling factors of the Hongyuan peatland, which is a part of the Ruoergai peatland on the eastern Qinghai-Tibet Plateau (QTP). Our results show that the Hongyuan alpine peatland was a CO2 sink with an annual NEE of −226.61 and −185.35 g C m–2 in 2014 and 2015, respectively. While, the non-growing season NEE was 53.35 and 75.08 g C m–2 in 2014 and 2015, suggesting that non-growing seasons carbon emissions should not be neglected. Clear diurnal variation in NEE was observed during the observation period, with the maximum CO2 uptake appearing at 12:30 (Beijing time, UTC+8). The Q10 value of the non-growing season in 2014 and 2015 was significantly higher than that in the growing season, which suggested that the CO2 flux in the non-growing season was more sensitive to warming than that in the growing season. We investigated the multi-scale temporal variations in NEE during the growing season using wavelet analysis. On daily timescales, photosynthetically active radiation was the primary driver of NEE. Seasonal variation in NEE was mainly driven by soil temperature. The amount of precipitation was more responsible for annual variation of NEE. The increasing number of precipitation event was associated with increasing annual carbon uptake. This study highlights the need for continuous eddy covariance measurements and time series analysis approaches to deepen our understanding of the temporal variability in NEE and multi-scale correlation between NEE and environmental factors.


Sign in / Sign up

Export Citation Format

Share Document