ecosystem carbon balance
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 3)

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 64
Author(s):  
Liubov Volkova ◽  
Wahyu Catur Adinugroho ◽  
Haruni Krisnawati ◽  
Rinaldi Imanuddin ◽  
Christopher John Weston

Although accurate estimates of biomass loss during peat fires, and recovery over time, are critical in understanding net peat ecosystem carbon balance, empirical data to inform carbon models are scarce. During the 2019 dry season, fires burned through 133,631 ha of degraded peatlands of Central Kalimantan. This study reports carbon loss from surface fuels and the top peat layer of 18.5 Mg C ha−1 (3.5 from surface fuels and 15.0 from root/peat layer), releasing an average of 2.5 Gg (range 1.8–3.1 Gg) carbon in these fires. Peat surface change measurements over one month, as the fires continued to smolder, indicated that about 20 cm of the surface was lost to combustion of peat and fern rhizomes, roots and recently incorporated organic residues that we sampled as the top peat layer. Time series analysis of live green vegetation (NDVI trend), combined with field observations of vegetation recovery two years after the fires, indicated that vegetation recovery equivalent to fire-released carbon is likely to occur around 3 years after fires.


Author(s):  
Paul C Selmants ◽  
Benjamin M. Sleeter ◽  
Jinxun Liu ◽  
Tamara S. Wilson ◽  
Clay Trauernicht ◽  
...  

2021 ◽  
Vol 16 (5) ◽  
pp. 053001
Author(s):  
Zelalem A Mekonnen ◽  
William J Riley ◽  
Logan T Berner ◽  
Nicholas J Bouskill ◽  
Margaret S Torn ◽  
...  

2021 ◽  
Author(s):  
Xin Yu ◽  
René Orth ◽  
Markus Reichstein ◽  
Ana Bastos

<p>The frequency and severity of droughts are expected to increase in the wake of climate change. Drought events not only cause direct impacts on the ecosystem carbon balance but also result in legacy effects during the following years. These legacies result from, for example, drought damage to the xylem or the crown which causes impaired growth, or from higher vulnerability to pests and diseases. To understand how droughts might affect the carbon cycle in the future, it is important to consider both direct and legacy effects. Such effects likely affect interannual variability in C fluxes but are challenging to detect in observations, and poorly represented in models. Therefore, the patterns and mechanisms inducing the legacy effects of drought on ecosystem carbon balance are necessarily needed to improve.</p><p>In this study, we analyze gross primary productivity (GPP) from eddy-covariance measurements in Germany to detect legacy effects from recent droughts. We follow a data-driven modeling approach using a random forest model trained in different sets of drought and non-drought periods. This approach allows quantifying legacy effects as deviations of observed GPP from modeled GPP in legacy years, which indicates a change in the vegetation response to hydro-climatic conditions as compared with the training period.</p>


2021 ◽  
Vol 102 ◽  
pp. 105275
Author(s):  
Jiasheng Li ◽  
Xiaomin Guo ◽  
Xiaowei Chuai ◽  
Fangjian Xie ◽  
Feng Yang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Eloisa Lasso ◽  
Paola Matheus-Arbeláez ◽  
Rachel E. Gallery ◽  
Carol Garzón-López ◽  
Marisol Cruz ◽  
...  

Páramos, tropical alpine ecosystems, host one of the world’s most diverse alpine floras, account for the largest water reservoirs in the Andes, and some of the largest soil carbon pools worldwide. It is of global importance to understand the future of this extremely carbon-rich ecosystem in a warmer world and its role on global climate feedbacks. This study presents the result of the first in situ warming experiment in two Colombian páramos using Open-Top Chambers. We evaluated the response to warming of several ecosystem carbon balance-related processes, including decomposition, soil respiration, photosynthesis, plant productivity, and vegetation structure after 3 years of warming. We found that OTCs are an efficient warming method in the páramo, increasing mean air temperature by 1.7°C and mean daytime temperature by 3.4°C. The maximum air temperature differences between OTC and control was 23.1°C. Soil temperature increased only by 0.1°C. After 3 years of warming using 20 OTC (10 per páramo) in a randomized block design, we found no evidence that warming increased CO2 emissions from soil respiration, nor did it increase decomposition rate, photosynthesis or productivity in the two páramos studied. However, total C and N in the soil and vegetation structure are slowly changing as result of warming and changes are site dependent. In Sumapaz, shrubs, and graminoids cover increased in response to warming while in Matarredonda we observed an increase in lichen cover. Whether this change in vegetation might influence the carbon sequestration potential of the páramo needs to be further evaluated. Our results suggest that páramos ecosystems can resist an increase in temperature with no significant alteration of ecosystem carbon balance related processes in the short term. However, the long-term effect of warming could depend on the vegetation changes and how these changes alter the microbial soil composition and soil processes. The differential response among páramos suggest that the response to warming could be highly dependent on the initial conditions and therefore we urgently need more warming experiments in páramos to understand how specific site characteristics will affect their response to warming and their role in global climate feedbacks.


2020 ◽  
Vol 26 (12) ◽  
pp. 7067-7078
Author(s):  
Marcos Fernández‐Martínez ◽  
Jordi Sardans ◽  
Talie Musavi ◽  
Mirco Migliavacca ◽  
Maitane Iturrate‐Garcia ◽  
...  

2020 ◽  
Author(s):  
Marcos Fernández-Martínez ◽  
Jordi Sardans ◽  
Josep Peñuelas ◽  
Ivan Janssens

<p>Global change is affecting the capacity of terrestrial ecosystems to sequester carbon. While the effect of climate on ecosystem carbon balance has largely been explored, the role of other potentially important factors that may shift with global change, such as biodiversity and the concentration of nutrients remains elusive. More diverse ecosystems have been shown to be more productive and stable over time and differences in foliar concentrations of N and P are related to large differences in how primary producers function. Here, we used 89 eddy-covariance sites included in the FLUXNET 2015 database, from which we compiled information on climate, species abundance and elemental composition of the main species. With these data, we assessed the relative importance of climate, endogenous factors, biodiversity and community-weighted concentrations of foliar N and P on terrestrial carbon balance. Climate and endogenous factors, such as stand age, are the main determinants of terrestrial C balance and their interannual variability in all types of ecosystems. Elemental stoichiometry, though, played a significant role affecting photosynthesis, an effect that propagates through ecosystem respiration and carbon sequestration. Biodiversity, instead, had a very limited effect on terrestrial carbon balance. We found increased respiration rates and more stable gross primary production with increasing diversity. Our results are the first attempt to investigate the role of biodiversity and the elemental composition of terrestrial ecosystems in ecosystem carbon balance.</p>


Sign in / Sign up

Export Citation Format

Share Document