terrestrial ecosystem
Recently Published Documents


TOTAL DOCUMENTS

1002
(FIVE YEARS 341)

H-INDEX

68
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Liyan Song ◽  
Yangqing Wang ◽  
Rui Zhang ◽  
Shu Yang

Abstract Landfills is a unique “terrestrial ecosystem” and serves as a significant carbon sink. Microorganism convert biodegradable substances in municipal solid waste (MSW) to CH4, CO2 and microbial biomass, consisting of the carbon cycling in landfills. Meanwhile, microbial mediated N and S cycles affect carbon cycling. How microbial community structure and function respond to C, N, and S cycling during solid waste decomposition, however are not well characterized. Here we show the response of bacterial and archaeal community structure and functions to C, N, and S cycling during solid waste decomposition in a long-term (265 days) operation laboratory-scale bioreactor through 16S rRNA based pyrosequencing and metagenomics analysis. Bacterial and archaeal community composition varied during solid waste decomposition. Aerobic respiration was the main pathway for CO2 emission, while anaerobic C fixation was the main pathway in carbon fixation. Methanogenesis and denitrification increased during solid waste decomposition, suggesting increasing CH4 and N2O emission. In contract, fermentation decreased along solid waste decomposition. Interestingly, Clostridiales were abundant and showed potential for several pathways in C, N, and S cycling. Archaea were involved in many pathways of C and N cycles. There is a shift between bacteria and archaea involvement in N2 fixation along solid waste decomposition that bacteria Clostridiales and Bacteroidales were initial dominant and then Methanosarcinales increased and became dominant in methanogenic phase. These results provide extensive microbial mediation of C, N, and S cycling profiles during solid waste decomposition.


2022 ◽  
Author(s):  
C Birnbaum ◽  
Jennifer Wood ◽  
Erik Lilleskov ◽  
Louis James Lamit ◽  
James Shannon ◽  
...  

Abstract Peatland ecosystems cover only 3 % of the world’s land area, however they store one-third of the global soil carbon (C). Peatlands play a central role in global C cycling as they contain more organic C than any other terrestrial ecosystem. Microbial communities are the main drivers of C decomposition in peatlands, yet we have limited knowledge of their structure and function. We investigated the vertical stratification of prokaryote and fungal communities from Wellington Plains peatland in the Australian Alps. Within the peatland complex, bog peat was sampled from the intact peatland and dried peat from the degraded peatland along a vertical soil depth gradient (i.e., acrotelm, mesotelm and catotelm). We analysed the prokaryote and fungal community structure, predicted functional profiles of prokaryotes using PICRUSt and assigned soil fungal guilds using FUNGuild. We found that the structure and the function of prokaryotes was vertically stratified in the intact bog. Carbon, manganese, nitrogen, lead and sodium best explained the prokaryote composition. Prokaryote richness was significantly higher in the intact bog acrotelm compared to degraded bog acrotelm. Fungal composition remained similar across the soil depth gradient, however there was a considerable increase in saprotroph abundance and decrease in endophyte abundance along the vertical soil depth gradient. The abundance of saprotrophs and plant pathogens was two-fold higher in the degraded bog acrotelm. Manganese, nitrogen, electrical conductivity and water table level (cm) best explained the fungal composition. Our results demonstrate that both fungal and prokaryote communities are shaped by soil abiotic factors and peatland degradation reduces microbial richness and alters microbial functions. Thus, current and future changes to the environmental conditions in these peatlands may lead to altered microbial community structure and associated functions which may have implications for broader ecosystem function changes in peatlands.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Hengmao Wang ◽  
Fei Jiang ◽  
Yi Liu ◽  
Dongxu Yang ◽  
Mousong Wu ◽  
...  

TanSat is China’s first greenhouse gases observing satellite. In recent years, substantial progresses have been achieved on retrieving column-averaged CO2 dry air mole fraction (XCO2). However, relatively few attempts have been made to estimate terrestrial net ecosystem exchange (NEE) using TanSat XCO2 retrievals. In this study, based on the GEOS-Chem 4D-Var data assimilation system, we infer the global NEE from April 2017 to March 2018 using TanSat XCO2. The inversion estimates global NEE at −3.46 PgC yr-1, evidently higher than prior estimate and giving rise to an improved estimate of global atmospheric CO2 growth rate. Regionally, our inversion greatly increases the carbon uptakes in northern mid-to-high latitudes and significantly enhances the carbon releases in tropical and southern lands, especially in Africa and India peninsula. The increase of posterior sinks in northern lands is mainly attributed to the decreased carbon release during the nongrowing season, and the decrease of carbon uptakes in tropical and southern lands basically occurs throughout the year. Evaluations against independent CO2 observations and comparison with previous estimates indicate that although the land sinks in the northern middle latitudes and southern temperate regions are improved to a certain extent, they are obviously overestimated in northern high latitudes and underestimated in tropical lands (mainly northern Africa), respectively. These results suggest that TanSat XCO2 retrievals may have systematic negative biases in northern high latitudes and large positive biases over northern Africa, and further efforts are required to remove bias in these regions for better estimates of global and regional NEE.


2022 ◽  
pp. SP521-2021-149
Author(s):  
Xiangdong Zhao ◽  
Daran Zheng ◽  
He Wang ◽  
Yanan Fang ◽  
Naihua Xue ◽  
...  

AbstractThe Oceanic Anoxic Event (OAE) 1b is well documented in western Tethys, however, records in Eurasia are still lacking. Here, we carried out high-resolution organic carbon isotope (δ13Corg), total organic carbon (TOC) contents and mercury (Hg) concentrations analysis of the lacustrine sediments from the Xiagou and Zhonggou formations in the Hanxiagou section, Jiuquan Basin, northwestern China. The lacustrine δ13Corg curve presents three stages of negative excursions above the basalt layer dated at 112.4 ± 0.3 Ma in the lowermost Zhonggou Formation. The three negative δ13Corg excursions, well corresponded with the three subevents (Kilian, Paquier, and Leenhardt) of the OAE1b in Poggio le Guaine (central Italy), Vocontian Basin (SE France) and St Rosa Canyon (NE Mexico) sections, supporting the record of the terrestrial OAE 1b in the Jiuquan Basin. Five mercury enrichment (ME) intervals in Hg/TOC ratios were recognized, indicating that the pulsed volcanism from the southern Kerguelen Plateau likely triggered the OAE 1b. However, the decoupling between NIE shifts and mercury enrichments signifying other carbon reservoir (with no link to mercury) probably contributed to the global carbon cycle perturbation during the OAE 1b period. Our results provide direct evidence to link the OAE 1b and terrestrial ecosystem in the Eurasia.


Author(s):  
Enzhu Hu ◽  
Zhimin Ren ◽  
Xiaoke Wang ◽  
Hongxing Zhang ◽  
Weiwei Zhang

Abstract Elevated tropospheric ozone concentration ([O3]) may substantially influence the belowground processes of the terrestrial ecosystem. Nevertheless, a comprehensive and quantitative understanding of the responses of soil C and N dynamics to elevated [O3] remains elusive. In this study, the results of 41 peer-reviewed studies were synthesized using meta-analytic techniques, to quantify the impact of O3 on ten variables associated with soil C and N, i.e., total C (TC, including soil organic C), total N (TN), dissolved organic C (DOC), ammonia N (NH4 +), nitrate N (NO3 -), microbial biomass C (MBC) and N (MBN), rates of nitrification (NTF) and denitrification (DNF), as well as C/N ratio. The results depicted that all these variables showed significant changes (P < 0.05) with [O3] increased by 27.6 ± 18.7 nL/L (mean ± SD), including decreases in TC, DOC, TN, NH4 +, MBC, MBN and NTF, and increases in C/N, NO3 - and DNF. The effect sizes of TN, NTF, and DNF were significantly correlated with O3 fumigation level and experimental duration (P < 0.05). Soil pH and climate were essential in analyses of O3 impacts on soil C and N. However, the responses of most variables to elevated [O3] were generally independent of O3 fumigation method, terrestrial ecosystem type, and additional [CO2] exposure. The altered soil C and N dynamics under elevated [O3] may reduce its C sink capacity, and change soil N availability thus impact plant growth and enhance soil N losses.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
WEI-MING ZHOU ◽  
MING-LI WAN ◽  
JOSEF PŠENIČKA ◽  
JUN WANG

Plants and arthropods interact with each other and constitute an important part of the modern terrestrial ecosystem (Schoonhoven et al., 2005). Historically, fossil records of plant-arthropod interactions have been well documented in Paleozoic terrestrial ecosystems, which were evidenced by large coprolites containing various plant fragments (e.g., Salter et al., 2012), small larvae and coprolites remained in plant organs (e.g., Feng et al., 2017), and diverse functional feeding groups discovered on plant stems, rachises, roots, leaves and fertile organs (e.g., Liu et al., 2020).


2022 ◽  
pp. 88-101
Author(s):  
Banwari Dandotiya ◽  
Harendra K. Sharma

This chapter provides a general overview of the effects of climate change on the terrestrial ecosystem and is meant to set the stage for the specific papers. The discussion in this chapter focuses basically on the effects of climatic disturbances on terrestrial flora and fauna, including increasing global temperature and changing climatic patterns of terrestrial areas of the globe. Basically, climate disturbances derived increasing temperature and greenhouse gases have the ability to induce this phenomenon. Greenhouse gases are emitted by a number of sources in the atmosphere such as urbanization, industrialization, transportation, and population growth, so these contributing factors and its effects on climatic events like temperature rise, change precipitation pattern, extreme weather events, survival and shifting of biodiversity, seasonal disturbances, and effects on glaciers are relatively described in this chapter.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Xiaobin Peng ◽  
Miao Yu ◽  
Haishan Chen

The terrestrial ecosystem plays a vital role in regulating the exchange of carbon between land and atmosphere. This study investigates how terrestrial vegetation coverage and carbon fluxes change in a world stabilizing at 1.5 °C and 2 °C warmer than pre-industrial level. Model results derived from 20 Earth System Models (ESMs) under low, middle, and high greenhouse emission scenarios from CMIP5 and CMIP6 are employed to supply the projected results. Although the ESMs show a large spread of uncertainties, the ensemble means of global LAI are projected to increase by 0.04 ± 0.02 and 0.08 ± 0.04 in the 1.5 and 2.0 °C warming worlds, respectively. Vegetation density is projected to decrease only in the Brazilian Highlands due to the decrease of precipitation there. The high latitudes in Eurasia are projected to have stronger increase of LAI in the 2.0 °C warming world compared to that in 1.5 °C warming level caused by the increase of tree coverage. The largest zonal LAI is projected around 70° N while the largest zonal NPP is projected around 60° N and equator. The zonally inhomogeneous increase of vegetation density and productivity relates to the zonally inhomogeneous increase of temperature, which in turn could amplify the latitudinal gradient of temperature with additional warming. Most of the ESMs show uniform increases of global averaged NPP by 10.68 ± 8.60 and 15.42 ± 10.90 PgC year−1 under 1.5 °C and 2.0 °C warming levels, respectively, except in some sparse vegetation areas. The ensemble averaged NEE is projected to increase by 3.80 ± 7.72 and 4.83 ± 10.13 PgC year−1 in the two warming worlds. The terrestrial ecosystem over most of the world could be a stronger carbon sink than at present. However, some dry areas in Amazon and Central Africa may convert to carbon sources in a world with additional 0.5 °C warming. The start of the growing season in the northern high latitudes is projected to advance by less than one month earlier. Five out of 10 CMIP6 ESMs, which use the Land Use Harmonization Project (LUH2) dataset or a prescribed potential vegetation distribution to constrain the future change of vegetation types, do not reduce the model uncertainties in projected LAI and terrestrial carbon fluxes. This may suggest the challenge in optimizing the carbon fluxes modeling in the future.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Yingchao Li ◽  
Zhiyuan Fan ◽  
Zhenhao Li ◽  
Xuefang Zhang ◽  
Ruyu Du ◽  
...  

Terrestrial ecosystem health (TEH) is the basis of regional sustainability development. The state of TEH is an important research direction in the land science field. The purpose of this paper was to explore the development trends and influencing factors of the. By using the radial basis function (RBF), neural network model, geographic information system (GIS), and the comprehensive index method, this paper predicted the land ecological changes of Henan Province from 2007 to 2025 based on a comprehensive evaluation of the system. The results show that the TEH of Henan Province exhibited a general trend of improvement from 2007 to 2025. The predictions exhibited a tendency to fluctuate and increase, from “severe warning” to “moderate warning” and even to “no warning” state. The early warning index of the subsystem showed a fluctuating upward trend except for the press subsystem, which fluctuated between “extraordinary warning” and “heavy warning” states. The overall TEH level is improving but is largely dependent on effective corresponding measures. The health status of the land ecosystem in Henan Province is guaranteed to be stable due to improvements in rural residential incomes, mechanization levels of cultivated land, domestic sewage treatment rates, and the numbers of scientific and technological personnel per unit of land. The TEH is mainly restricted by the population densities, urbanization levels, inputs of fertilizers and pesticides, and average wastewater load factors of the land. To improve the health level of the land ecosystem, it is necessary to reduce the use of fertilizers and pesticides and to control the urbanization rate. At the same time, improving the level of forest coverage and the effective irrigation rate play a positive role in improving ecosystem health. The results provide a reference for land-use planning and management decisions.


Sign in / Sign up

Export Citation Format

Share Document