Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture

2016 ◽  
Vol 566-567 ◽  
pp. 1080-1093 ◽  
Author(s):  
Mohsen Jalali ◽  
Mahdi Jalali
2018 ◽  
Vol 49 (18) ◽  
pp. 2284-2290
Author(s):  
Roghayeh Shahriaripour ◽  
Ahmad Tajabadipour ◽  
Isa Esfandiarpoor ◽  
Vahid Mozafary

Author(s):  
J. S. Tenywa ◽  
E. Odama ◽  
A. K. Amoding

Purpose: To evaluate the predictive capacity common procedures for soil P extraction and testing in laboratories in the region. Materials and Methods: A pot study with treatments viz. soil phosphorus extraction methods (Bray I, Bray II and Mehlich 3), and six P application rates (0, 20, 40, 60, 80 and 100 kg P ha-1). Maize (Zea mays L.) variety Longe IV was the test crop. A Ferralsol from northwestern Uganda (West Nile) was used in this study. Results and Conclusion: Mehlich 3 correlated most with plant P uptake by presenting the highest correlation coefficient with plant P content (r = 0.254) and a number of leaves per plant (r = 0.733). A strong positive correlation existed between Bray I and Mehlich 3 extractable P values (r = 0.975), suggesting lack of a marked difference between them; implying that either of the two procedures could be applied for soil P extraction in Ferralsols. However, Mehlich 3, being a multi-nutrient extractant, was recommended as the most suitable for P extraction for the Ferralsol used in this study.


2016 ◽  
Vol 61 (No. 2) ◽  
pp. 86-96 ◽  
Author(s):  
R. Wuenscher ◽  
H. Unterfrauner ◽  
R. Peticzka ◽  
F. Zehetner

Crops & Soils ◽  
2019 ◽  
Vol 52 (5) ◽  
pp. 36-38
Author(s):  
Christopher W. Rogers ◽  
Biswanath Dari ◽  
April Leytem

1999 ◽  
Vol 79 (4) ◽  
pp. 615-625 ◽  
Author(s):  
Suzanne Beauchemin ◽  
R. R. Simard

Many agricultural fields contain excessive labile soil P in regard to crop needs. Its environmental fate must be assessed. The concept of P saturation degree is meaningful as it describes the portion of the soil binding sites already covered with P, and indicates the potential desorbability of soil P. The first objective of this study was to review different indices that have been proposed to estimate the degree of soil P saturation and the relationships between soil P saturation degree and P solubility. The second objective is to discuss their suitability as environmental indicators for P management in the province of Québec, Canada. In the Netherlands, the P saturation index is defined as the ratio of P to Al + Fe contents extracted by ammonium oxalate [Pox/( Alox + Feox ) or ( Pox/0.5( Alox + Feox )]. This approach has been mainly used with non-calcareous soils. In Québec, the ratio of Mehlich-III extractable P to Al (M3P/AlM3) is proposed as an alternative, which relies on routine laboratory test. However, the suitability of the M3P/AlM3 ratio has yet to be determined for some specific soil groups (e.g. gleyed soils, soils with Alox content >6 g kg−1) and for subsoil horizons. Regardless of the chosen index, it is suggested that the best way to manage the risk of water contamination by P in Québec (namely, defining critical levels of soil P saturation) may be to form homogeneous soil groups to account for their distinctive behaviour and characteristics. Key words: Phosphorus, saturation, management


New Forests ◽  
2012 ◽  
Vol 43 (5-6) ◽  
pp. 805-814 ◽  
Author(s):  
S. Pascual ◽  
J. R. Olarieta ◽  
R. Rodríguez-Ochoa

2020 ◽  
Author(s):  
Tonu Tonutare ◽  
Gert Kaldmae ◽  
Tiina Köster ◽  
Kadri Krebstein ◽  
Ako Rodima

<p>Due to increase of fertilizers prices and tightening of environmental protection requirements the need for efficient use of fertilizers has increased. At moment over the word huge number of different methods for determination of soil plant available phosphorus (PAP) are in use. Due to unequal extraction ability of extractants have each method own specific gradation to evaluate the soil P class. Allmost all widely used PAP extraction methods are developed in last century, mostly more than fifty years ago and often there is not possible to found information how the P status classes and fertilizer recommendations are determined for each method is determined.</p><p>The content of PAP in soil is difficult to estimate because soil pH has a strong effect to soil  - solution chemistry. Therefore extracting  soils with higly buffered solutions as for example Mehlich 3 can give overestimated results. The acidic Mehlich  3 extactant can solubilize relatively insoluble Ca- Fe- and Al phosphates. Also the AL (acetate-lactate) method uses the buffered extraction solution and may influence the amount of extracted PAP. The most realistic conditions for PAP extraction can give the extraction solution which mimic the soil environment that has actively growing roots. </p><p>The aim of our research was to investigate the extraction of PAP with extragent similar by chemical composition to soil solution with root exudates proposed by Haney et al (2010).  The obtained results were compared with Mehlich 3 and AL methods results.    </p><p>Ref.: Haney, R.L., Haney, E.B., Hossner, L.R., Arnold, J,G. 2010. Modification to the New Soil Extractant H3A-1: A Multinutrient Extractant. Communications in Soil Science and Plant Analysis, 41:1513-1523.</p>


Sign in / Sign up

Export Citation Format

Share Document