scholarly journals A Comparison of Different Soil Phosphorus Extraction Methods for Used to Determine Plant Available Soil Phosphorus of Erzurum Plain Agricultural Soils

Author(s):  
Nesrin YILDIZ ◽  
Tülay DİZİKISA
2016 ◽  
Vol 61 (No. 2) ◽  
pp. 86-96 ◽  
Author(s):  
R. Wuenscher ◽  
H. Unterfrauner ◽  
R. Peticzka ◽  
F. Zehetner

2018 ◽  
Vol 49 (18) ◽  
pp. 2284-2290
Author(s):  
Roghayeh Shahriaripour ◽  
Ahmad Tajabadipour ◽  
Isa Esfandiarpoor ◽  
Vahid Mozafary

Author(s):  
J. S. Tenywa ◽  
E. Odama ◽  
A. K. Amoding

Purpose: To evaluate the predictive capacity common procedures for soil P extraction and testing in laboratories in the region. Materials and Methods: A pot study with treatments viz. soil phosphorus extraction methods (Bray I, Bray II and Mehlich 3), and six P application rates (0, 20, 40, 60, 80 and 100 kg P ha-1). Maize (Zea mays L.) variety Longe IV was the test crop. A Ferralsol from northwestern Uganda (West Nile) was used in this study. Results and Conclusion: Mehlich 3 correlated most with plant P uptake by presenting the highest correlation coefficient with plant P content (r = 0.254) and a number of leaves per plant (r = 0.733). A strong positive correlation existed between Bray I and Mehlich 3 extractable P values (r = 0.975), suggesting lack of a marked difference between them; implying that either of the two procedures could be applied for soil P extraction in Ferralsols. However, Mehlich 3, being a multi-nutrient extractant, was recommended as the most suitable for P extraction for the Ferralsol used in this study.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


2013 ◽  
Vol 44 (13) ◽  
pp. 1992-2007
Author(s):  
K. A. Cassida ◽  
J. G. Foster ◽  
J. M. Gonzalez ◽  
R. W. Zobel ◽  
M. A. Sanderson

2006 ◽  
Vol 63 (6) ◽  
pp. 558-563 ◽  
Author(s):  
Gláucia Cecília Gabrielli dos Santos ◽  
Ronaldo Severiano Berton ◽  
Otávio Antônio de Camargo ◽  
Mônica Ferreira de Abreu

The costs related to the construction and maintenance of industrial landfills, and the environmental risks that they may represent, have increased the interest of several types of industries in studying the possibility of applying residues to agricultural soils. This study evaluates the efficiency of flue dust as a zinc source for corn, and the zinc availability for corn evaluated by four methods. A greenhouse experiment carried out at Campinas, SP, Brazil, evaluated the effect of two zinc sources (flue dust and zinc sulphate), at three rates (5, 50 and 150 mg dm-3), in one soil (Rhodic Hapludox) under two pH conditions (5.0 and 6.0). The treatments were arranged in a randomized factorial scheme design with three replications. Zinc availability indexes were determined by the pH 7.3 DTPA, Mehlich-1, and Mehlich-3 methods. The free Zn2+ activity in soil solution was calculated by the MINTEQ computer model. The extraction methods and the activity of the free ion Zn2+ were equally reliable to evaluate zinc availability in the soil amended with flue dust. More than 70% of the total Zn present in the saturation extract was in the free ion form, and the remainder was mainly complexed to SO4(2-) and OH-, independent of soil pH. Flue dust is a zinc supplier to plants. All tested methods were efficient in evaluating Zn availability for corn, independently of soil pH.


Sign in / Sign up

Export Citation Format

Share Document