solution chemistry
Recently Published Documents


TOTAL DOCUMENTS

1717
(FIVE YEARS 203)

H-INDEX

84
(FIVE YEARS 9)

2022 ◽  
Vol 119 (3) ◽  
pp. e2115629119
Author(s):  
Meret Aeppli ◽  
Sébastien Giroud ◽  
Sanja Vranic ◽  
Andreas Voegelin ◽  
Thomas B. Hofstetter ◽  
...  

Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES–oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.


2022 ◽  
Author(s):  
Nicolaj Kofod ◽  
Maria Storm Thomsen ◽  
Patrick Nawrocki ◽  
Thomas Just Sørensen

Lanthanides are found in critical applications from display technology to renewable energy. Often these rare earth elements are used as alloys or functional materials, yet the access to them are trough solution processes. In aqueous solution the rare earths are found predominantly as trivalent ions and charge balance dictates that counter ions are present. The fast ligand exchange and lack of directional bonding in lanthanides complexes has led to questions regarding the speciation of Ln3+ solvates in the presence of various counter ions, and to the distinction between innocent = non-coordinating, and non-innocent = coordinating counter ions. There is limited agreement as to which counter ions that belong to each group, which lead to this report. By using Eu3+ luminescence, it was possible to clearly distinguish between coordinating and non-coordinating ions. To interpret the results it was required to bridge the descriptions of ion pairing and coordination. The da-ta—in form of Eu3+ luminescence spectra and luminescence lifetimes from solutions with varying concentrations of acetate, chloride, nitrate, fluoride, sulfate, perchlorate and triflate—were contrasted to those obtained with ethylenediaminetet-raaceticacid (EDTA), which allowed for the distinction between three Ln3+-anion interaction types. It was possible to con-clude which counter ions are truly innocent (e.g. ClO4- and OTf-), and which clearly coordinate (e.g. NO3- and AcO-). Finally, the considerate amount of data from systems studied under similar conditions allowed the minimum perturbation arising from inner sphere or outer sphere coordination in Eu3+ complexes to be identified.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 137
Author(s):  
Lina Shang ◽  
Faming Kang ◽  
Wenze Gao ◽  
Zheng Zhou ◽  
Wei Xu

The on-surface synthesis of carbon nanostructures has attracted tremendous attention owing to their unique properties and numerous applications in various fields. With the extensive development of scanning tunneling microscope (STM) and noncontact atomic force microscope (nc-AFM), the on-surface fabricated nanostructures so far can be characterized on atomic and even single-bond level. Therefore, various novel low-dimensional carbon nanostructures, challenging to traditional solution chemistry, have been widely studied on surfaces, such as polycyclic aromatic hydrocarbons, graphene nanoribbons, nanoporous graphene, and graphyne/graphdiyne-like nanostructures. In particular, nanostructures containing sp-hybridized carbons are of great advantage for their structural linearity and small steric demands as well as intriguing electronic and mechanical properties. Herein, the recent developments of low-dimensional sp-carbon nanostructures fabricated on surfaces will be summarized and discussed.


Author(s):  
H Wu ◽  
Z Liu ◽  
L Xu ◽  
X Wang ◽  
Qiang Chen ◽  
...  

Abstract The interactions between discharge plasmas and an aqueous solutions can enable the production of reactive species and charge transfer at the plasma-liquid interface, forming the plasma electrochemical system (PES). The PES are promising for diverse applications, such as nanomaterials synthesis, due to the activation of the solution chemistry by the plasma. In this paper, we investigate the influence of the solution’s pH value on the formation of silver nanoparticles (AgNPs) in a direct current (DC) PES. Dual argon DC plasmas are generated in an H-type electrochemical cell containing an aqueous solution of silver nitrate with pH values in the range of 1.99-10.71. By this design, the solution acts as a cathode at one end of the H-type cell, and as an anode at the other end. The results show that the AgNPs are formed at the anode except for the solution with the pH value of 1.99. However, at the cathode, the AgNPs only appear in the solution with the pH value of 10.71. We find that the solvated electrons and hydrogen peroxide produced by the plasma-liquid interactions are responsible for the Ag+ reduction at the solution anode and the solution cathode, respectively.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chang Liu ◽  
Fei Liu ◽  
Chen Jin ◽  
Sishi Zhang ◽  
Lianhua Zhang ◽  
...  

AbstractSuperlattices of nanoparticles are generally produced based on solution chemistry processes. In this paper, we demonstrate that self-assembled monolayer structures of nanoparticles with superlattice periodicities can also be produced on template-free surfaces in the gas-phase cluster beam deposition process. It is found that the packing of Fe nanoparticles corresponds to an average of two-dimensional densely packed lattice with a hexagonal summary. By controlling the nanoparticle coverage, the two-dimensional densely packed monolayer morphology can spread to the whole substrate surface being deposited. A formation mechanism of the ordered monolayers is proposed. The densely packed morphologies are formed by the balance between the diffusion rate of the nanoparticles and their filling speed on the substrate surface determined by the deposition rate, and the ordering of the nanoparticle arrays is driven by the inter-particle attractive interactions. The model is strongly supported by a series of carefully designed cluster deposition experiments.


2021 ◽  
Vol 118 (46) ◽  
pp. e2025670118
Author(s):  
Yuval Kadan ◽  
Fergus Tollervey ◽  
Neta Varsano ◽  
Julia Mahamid ◽  
Assaf Gal

Unicellular marine microalgae are responsible for one of the largest carbon sinks on Earth. This is in part due to intracellular formation of calcium carbonate scales termed coccoliths. Traditionally, the influence of changing environmental conditions on this process has been estimated using poorly constrained analogies to crystallization mechanisms in bulk solution, yielding ambiguous predictions. Here, we elucidated the intracellular nanoscale environment of coccolith formation in the model species Pleurochrysis carterae using cryoelectron tomography. By visualizing cells at various stages of the crystallization process, we reconstructed a timeline of coccolith development. The three-dimensional data portray the native-state structural details of coccolith formation, uncovering the crystallization mechanism, and how it is spatially and temporally controlled. Most strikingly, the developing crystals are only tens of nanometers away from delimiting membranes, resulting in a highly confined volume for crystal growth. We calculate that the number of soluble ions that can be found in such a minute volume at any given time point is less than the number needed to allow the growth of a single atomic layer of the crystal and that the uptake of single protons can markedly affect nominal pH values. In such extreme confinement, the crystallization process is expected to depend primarily on the regulation of ion fluxes by the living cell, and nominal ion concentrations, such as pH, become the result, rather than a driver, of the crystallization process. These findings call for a new perspective on coccolith formation that does not rely exclusively on solution chemistry.


2021 ◽  
Vol 1 ◽  
pp. 143-144
Author(s):  
Felix Brandt ◽  
Martina Klinkenberg ◽  
Sébastien Caes ◽  
Jenna Poonoosamy ◽  
Wouter Van Renterghem ◽  
...  

Abstract. Immobilization of high-level and intermediate-level nuclear wastes by vitrification in borosilicate glass is a well-established process. There is a consensus between the waste management agencies of many countries and many experts that vitrified nuclear waste should be disposed of in a deep geological waste repository and therefore its long-term behavior needs to be taken into account in safety assessments. In contact with water, borosilicate glass is metastable and dissolves. In static dissolution experiments, often a surface alteration layer (SAL) forms on the dissolving glass, and later sometimes secondary phases form. Based on boron or lithium release rates, commonly three stages of glass dissolution are defined as a function of the reaction progress: (I) initial dissolution, described by a congruent glass dissolution at the highest rate, (II) residual dissolution, characterized by a glass dissolution rate several orders of magnitude lower than the initial one, and (III) resumption of glass alteration with initial rates. Microscopically, the formation of a complex SAL has been identified as a prerequisite for the slower dissolution kinetics of stage II. Stage III is typically observed under specific conditions, i.e., high temperature and/or high pH driven by the uptake of Si and Al into secondary phases. Different glass dissolution models explaining the mechanisms of the SAL formation and rate-limiting steps have been proposed and are still under debate. In this article different aspects of glass dissolution from recent studies in the literature and our own work are discussed with a focus on the microscopic aspects of SAL formation, secondary phase formation and the resumption of glass dissolution. Most of the experiments in the literature were performed under near-neutral pH conditions and at 90 ∘C, following standard procedures, to understand the fundamental mechanisms of glass dissolution. The example of interaction of glass and cementitious materials as discussed here is relevant for safety assessments because most international concepts include cement e.g., as lining, for plugs, or as part of the general construction of the repository. The aim of the investigations presented in this paper was to study the combined effect of hyperalkaline conditions and very high surface area/volume ratios (SA/V=264000m-1) on the dissolution of international simplified glass (ISG) and the formation of secondary phases at 70 ∘C in a synthetic young cement water containing Ca (YCWCa). The new results show that the SA/V ratio is a key parameter for the dissolution rate and for the formation of the altered glass surface and secondary phases. A comparison with similar studies in the literature shows that especially on the microscopic and nanoscale, different SA/V ratios lead to different features on the dissolving glass surface, even though the SA-normalized element release rates appear similar. Zeolite and Ca-silicate-hydrate phases (CSH) were identified and play a key role for the evolution of the solution chemistry. A kinetic dissolution model coupled with precipitation of secondary phases can be applied to relate the amount of dissolved glass to the evolution of the solution's pH.


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 512-530
Author(s):  
Alex L. Riley ◽  
Christopher P. Porter ◽  
Mark D. Ogden

The extraction of Cu from mixed-metal acidic solutions by the thiourea-functionalized resin Puromet MTS9140 was studied. Despite being originally manufactured for precious metal recovery, a high selectivity towards Cu was observed over other first-row transition metals (>90% removal), highlighting a potential for this resin in base metal recovery circuits. Resin behaviour was characterised in batch-mode under a range of pH and sulphate concentrations and as a function of flow rate in a fixed-bed setup. In each instance, a high selectivity and capacity (max. 32.04 mg/g) towards Cu was observed and was unaffected by changes in solution chemistry. The mechanism of extraction was determined by XPS to be through reduction of Cu(II) to Cu(I) rather than chelation. Elution of Cu was achieved by the use of 0.5 M–1 M NaClO3. Despite effective Cu elution (82%), degradation of resin functionality was observed, and further detailed through the application of IC analysis to identify degradation by-products. This work is the first detailed study of a thiourea-functionalized resin being used to selectively target Cu from a complex multi-metal solution.


2021 ◽  
Vol 2 (4) ◽  
pp. 641-656
Author(s):  
Feng Zhang ◽  
Xun Xi ◽  
Shangtong Yang

In this paper, the recent research progress on the corrosion of reinforced alkali-activated materials (AAMs) concrete structures is reviewed. The corrosion mechanisms induced by carbonation and chloride ingress in AAMs concrete are discussed, from the perspectives of composition, microstructure and pore solution chemistry, in comparison to ordinary Portland cement (OPC) concrete. The steel–alkali-activated concrete interface is a key to investigating corrosion initiation and propagation, which has different physical and chemical characteristics of the steel–concrete interface in OPC concrete. Moreover, the electrochemical process testing methods including half-cell potential and linear polarization resistance are critically discussed with a focus on what could be inherited from the OPC concrete and what criteria are no longer suitable for AAMs concrete due to underestimation in most cases. New data and theories are urgently needed for using AAMs in concrete structures to replace OPC. At the end of this paper, the research gaps and future research needs are summarised for the sake of widespread application of AAMs in concrete structures for sustainable and low-carbon construction.


Sign in / Sign up

Export Citation Format

Share Document