scholarly journals Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach

2020 ◽  
Vol 726 ◽  
pp. 138600 ◽  
Author(s):  
A. Gusain ◽  
M.P. Mohanty ◽  
S. Ghosh ◽  
C. Chatterjee ◽  
S. Karmakar
2020 ◽  
Author(s):  
Manuela Irene Brunner ◽  
Simon Papalexiou ◽  
Eric Gilleland

<p>Flooding can affect large regions leading to high economic and societal costs. Estimating regional flood risk is crucial for developing adaptation strategies, public awareness policies, and protection structures. Yet, estimating regional flood hazard is not trivial because of the few large flood events observed. Here, we derive regional flood hazard estimates for large river basins in the United States by using a stochastic streamflow generator. This allows us to increase the number of flood events available for the analysis and to investigate the simultaneous occurrence of flooding in different parts of a river basin. <br>We propose the continuous, stochastic simulation approach (<em>PRSim.wave</em>), which combines a non-parametric spatio-temporal model based on the wavelet transform with the parametric kappa distribution. The model reproduces the temporal and distributional characteristics of streamflow at individual sites and retains the spatial dependencies between sites even for spatial extremes. We use <em>PRSim.wave</em> to generate long and spatially consistent time series of daily discharge for a large set of catchments in the conterminous United States. For each catchment, we extract flood events from the simulated series using a peak-over-threshold approach to derive a spatial dataset of flood occurrences. Using this dataset, we estimate how probable it is that a certain percentage of stations within a specific river basin is jointly flooded. We show that: (1) there are strong regional differences in the likelihood of joint and potentially widespread flooding and (2) there are spatial differences in regional flood hazard estimates which could not be derived from observed data only. We deem our approach a valuable tool for water managers and policy makers to make informed decisions on the risk of widespread flooding.</p>


2014 ◽  
Vol 2 (11) ◽  
pp. 7027-7059 ◽  
Author(s):  
T. Sayama ◽  
Y. Tatebe ◽  
Y. Iwami ◽  
S. Tanaka

Abstract. Thailand floods in 2011 caused an unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyzes the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than past large floods including the ones in 1995 and 2006, resulted in such a devastating flooding. To quantify the hydrologic sensitivity, this study simulated a long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume in 2011 was 1.6 times more than past flood events. Furthermore the elasticity index suggested that 1% increase in rainfall causes 2.3% increase in runoff and 4.2% increase in flood inundation. This study highlights the importance of sensitivity quantification for better understanding of flood hazard characteristics; and the presented approach is effective for the analysis at large river basins.


2021 ◽  
Vol 656 (1) ◽  
pp. 012010
Author(s):  
M Zeleňáková ◽  
M Šugareková ◽  
P Purcz ◽  
S Gałaś ◽  
M M Portela ◽  
...  

2011 ◽  
Vol 45 (21) ◽  
pp. 9262-9267 ◽  
Author(s):  
Paul F. Schuster ◽  
Robert G. Striegl ◽  
George R. Aiken ◽  
David P. Krabbenhoft ◽  
John F. Dewild ◽  
...  

2015 ◽  
Vol 12 (7) ◽  
pp. 6755-6797 ◽  
Author(s):  
S. Zuliziana ◽  
K. Tanuma ◽  
C. Yoshimura ◽  
O. C. Saavedra

Abstract. Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.


Sign in / Sign up

Export Citation Format

Share Document