Contribution of crop residue, soil, and fertilizer nitrogen to nitrous oxide emissions varies with long-term crop rotation and tillage

2021 ◽  
Vol 767 ◽  
pp. 145107
Author(s):  
Pedro Vitor Ferrari Machado ◽  
Richard E. Farrell ◽  
William Deen ◽  
R. Paul Voroney ◽  
Katelyn A. Congreves ◽  
...  
2021 ◽  
Vol 209 ◽  
pp. 104910
Author(s):  
Guangdi D. Li ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
Adam J. Lowrie ◽  
Richard J. Lowrie ◽  
...  

2014 ◽  
Vol 94 (3) ◽  
pp. 421-433 ◽  
Author(s):  
C. F. Drury ◽  
W. D. Reynolds ◽  
C. S. Tan ◽  
N. B. McLaughlin ◽  
X. M. Yang ◽  
...  

Drury, C. F., Reynolds, W. D., Tan, C. S., McLaughlin, N. B., Yang, X. M., Calder, W., Oloya, T. O. and Yang, J. Y. 2014. Impacts of 49–51 years of years of fertilization and crop rotation on growing season nitrous oxide emissions, nitrogen uptake and corn yields. Can. J. Soil Sci. 94: 421–433. A field study was established in 1959 to evaluate the effects of fertilization and crop rotation on crop yields, soil and environmental quality on a Brookston clay loam. There were two fertilizer treatments (fertilized and not-fertilized) and six cropping treatments including continuous corn (CC), continuous Kentucky bluegrass sod and a 4-yr rotation of corn–oat–alfalfa–alfalfa with each phase present each year. We measured N2O emissions, inorganic N and plant N uptake over three growing seasons (2007–2009) in the corn phase. Nitrous oxide emissions varied over the 3 yr as a result of the seasonal variation in precipitation quantity, intensity and timing and differences in crop growth and N uptake. Fertilized CC lost, on average, 7.36 kg N ha−1 by N2O emissions, whereas the not-fertilized CC lost only 0.51 kg N ha−1. Fertilized rotation corn (RC) lost 6.46 kg N ha−1, which was 12% lower than fertilized CC. The not-fertilized RC, on the other hand, emitted about half as much N2O (2.95 kg N ha−1) as the fertilized RC. Fertilized RC had corn grain yields that averaged 10.0 t ha−1 over the 3 yr followed by fertilized CC at 5.48 t ha−1. Not-fertilized RC corn had yields that were 61% lower (3.93 t ha−1) than fertilized RC, whereas the not-fertilized CC had yields that were 75% lower (1.39 t ha−1) than fertilized CC. Nitrous oxide emissions were found to be dramatically affected by long-term management practices and crop rotation had lower emissions in the corn phase of the rotation even though the N input from fertilizer addition and legume N fixation was greater. These N2O emission and yield results were due to both factors that are traditionally used to describe these processes as well as long-term soil quality factors, which were created by the long-term management (i.e., soil organic carbon, soil physical parameters such as bulk density, and porosity, soil fauna and micro-flora) and that influenced crop growth, N uptake and soil water contents.


Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 1146-1154 ◽  
Author(s):  
Yongxiang Yu ◽  
Chengyi Zhao ◽  
Ningguo Zheng ◽  
Hongtao Jia ◽  
Huaiying Yao

2015 ◽  
Vol 146 ◽  
pp. 213-222 ◽  
Author(s):  
Cimélio Bayer ◽  
Juliana Gomes ◽  
Josiléia Accordi Zanatta ◽  
Frederico Costa Beber Vieira ◽  
Marisa de Cássia Piccolo ◽  
...  

2021 ◽  
Author(s):  
Nakian Kim ◽  
Gevan D. Behnke ◽  
María B. Villamil

Abstract. Modern agricultural systems rely on inorganic nitrogen (N) fertilization to enhance crop yields, but its overuse may negatively affect soil properties. Our objective was to investigate the effect of long-term N fertilization on key soil properties under continuous corn [Zea mays L.] (CCC) and both the corn (Cs) and soybean [Glycine max L. Merr.] (Sc) phases of a corn-soybean rotation. Research plots were established in 1981 with treatments arranged as a split-plot design in a randomized complete block design with three replications. The main plot was crop rotation (CCC, Cs, and Sc), and the subplots were N fertilizer rates of 0 kg N ha−1 (N0, controls), and 202 kg N ha−1, and 269 kg N ha−1 (N202, and N269, respectively). After 36 years and within the CCC, the yearly addition of N269 compared to unfertilized controls significantly increased cation exchange capacity (CEC, 65 % higher under N269) and acidified the top 15 cm of the soil (pH 4.8 vs. pH 6.5). Soil organic matter (SOM) and total carbon stocks (TCs) were not affected by treatments, yet water aggregate stability (WAS) decreased by 6.7 % within the soybean phase of the CS rotation compared to CCC. Soil bulk density (BD) decreased with increased fertilization by 5 % from N0 to N269. Although ammonium (NH4+) did not differ by treatments, nitrate (NO3−) increased eight-fold with N269 compared to N0, implying increased nitrification. Soils of unfertilized controls under CCC have over twice the available phosphorus level (P) and 40 % more potassium (K) than the soils of fertilized plots (N202 and N269). On average, corn yields increased 60 % with N fertilization compared to N0. Likewise, under N0, rotated corn yielded 45 % more than CCC; the addition of N (N202 and N269) decreased the crop rotation benefit to 17 %. Our results indicated that due to the increased level of corn residues returned to the soil in fertilized systems, long-term N fertilization improved WAS and BD, yet not SOM, at the cost of significant soil acidification and greater risk of N leaching and increased nitrous oxide emissions.


2018 ◽  
Vol 8 (10) ◽  
pp. 4958-4966 ◽  
Author(s):  
Rose M. Martin ◽  
Cathleen Wigand ◽  
Elizabeth Elmstrom ◽  
Javier Lloret ◽  
Ivan Valiela

2018 ◽  
Vol 262 ◽  
pp. 36-47 ◽  
Author(s):  
Daniel Plaza-Bonilla ◽  
Jorge Álvaro-Fuentes ◽  
Javier Bareche ◽  
Evangelina Pareja-Sánchez ◽  
Éric Justes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document