salt marsh
Recently Published Documents


TOTAL DOCUMENTS

4042
(FIVE YEARS 609)

H-INDEX

107
(FIVE YEARS 10)

2022 ◽  
Author(s):  
◽  
Sheron Y. Luk

Coastal ecosystems provide key services that benefit human wellbeing yet are undergoing rapid degradation due to natural and anthropogenic pressures. This thesis seeks to understand how disturbances impact salt marsh and estuarine ecosystem functioning in order to refine their role in coastal ecosystem service delivery and predict future resilience. Salt marsh survival relative to sealevel rise increasingly relies on the accumulation and preservation of soil organic carbon (SOC). Firstly, I characterized SOC development and turnover in a New England salt marsh and found that salt marsh soils typically store marsh grass-derived compounds that are reworked over centuries-to-millennia. Next, I assessed how two common marsh disturbances – natural ponding and anthropogenic mosquito ditching – affect salt marsh carbon cycling and storage. Salt marsh ponds deepen through soil erosion and decomposition of long-buried marsh peat. Further, the SOC lost during pond development is not fully recouped once drained ponds are revegetated and virtually indistinguishable from the surrounding marsh. Mosquito ditches, which were installed in ~ 90% of New England salt marshes during the Great Depression, did not significantly alter marsh carbon storage. In Buzzards Bay, Massachusetts, a US National Estuary, we tested relationships among measures of estuarine water quality, recreational activity, and local socioeconomic conditions to understand how the benefits of cultural ecosystem services are affected by shifts in water quality associated with global change and anthropogenic activity. Over a 24-year period, water quality degradation coinciding with increases in Chlorophyll a is associated with declines in fishery abundance and cultural ecosystem service values ($0.08 – 0.67 million USD). In combination, incorporation of both anthropogenic and natural disturbances to coastal ecosystem functioning and service delivery can produce improved estimates of ecosystem service valuation for effective resource decision-making under future climate scenarios.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yiquan Yuan ◽  
Xiuzhen Li ◽  
Zuolun Xie ◽  
Liming Xue ◽  
Bin Yang ◽  
...  

Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source.


2022 ◽  
Author(s):  
Matthew Madewell ◽  
Rusty Feagin ◽  
Thomas Huff ◽  
Bill Balboa

Abstract Salt marshes can be vulnerable to reduced freshwater input. Reduced freshwater inflows, particularly during a hot or dry summer season, can be catastrophic for vegetation productivity, organic accretion and inorganic sedimentation, and the ability of a marsh to maintain a sustainable elevation facing relative sea level rise (RSLR). Unfortunately, it is challenging for scientists to obtain inflow records for ungauged watersheds and link them with historical trends of salt marsh loss. We sought to address this challenge in Big Boggy National Wildlife Refuge (NWR), a small watershed in East Matagorda Bay, Texas. Our objective was to link the quantity of freshwater inflow with salt marsh sustainability and recommend management actions for the NWR. We first explored land cover trends and found that this watershed lost more than one-third of its low marsh since 1953. We then measured the streamflow into and out of the watershed, created a water budget, and modeled historical and future inflows from 1953 to 2100. Freshwater inflows have been increasing on average since 1953, but a combination of RSLR, sediment starvation, and punctuated seasonal droughts are likely responsible for the loss of salt marsh. We also estimated supplemental water needs during potential droughts out to 2100. We conclude that managers cannot fundamentally alter the accretion versus RSLR balance in this basin except by modifying freshwater input. Thus, during droughts, they should focus on providing these inputs and avoiding vegetation loss. Our work points to both water purchases and land management options that can achieve this goal.


Author(s):  
Md Masum Billah ◽  
Md Khurshid Alam Bhuiyan ◽  
Mohammad Ahsanul Islam ◽  
Jewel Das ◽  
ATM Rafiqul Hoque

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0249330
Author(s):  
Kathryn Beheshti ◽  
Charlie Endris ◽  
Peter Goodwin ◽  
Annabelle Pavlak ◽  
Kerstin Wasson

Salt marsh loss is projected to increase as sea-level rise accelerates with global climate change. Salt marsh loss occurs along both lateral creek and channel edges and in the marsh interior, when pannes expand and coalesce. Often, edge loss is attributed to erosive processes whereas dieback in the marsh interior is linked to excessive inundation or deposition of wrack, but remains poorly understood. We conducted a two-year field investigation in a central California estuary to identify key factors associated with panne contraction or expansion. Our study explored how an abundant burrowing crab, shown to have strong negative effects on marsh biomass near creek edges, affects panne dynamics. We also explored which physical panne attributes best predicted their dynamics. To our knowledge, ours is the first study of panne dynamics in a California marsh, despite how ubiquitous pannes are as a feature of marshes in the region and how often extensive marsh dieback occurs via panne expansion. Overall, we found that pannes contracted during the study period, but with variable rates of marsh recovery across pannes. Our model incorporating both physical and biological factors explained 86% of the variation in panne contraction. The model revealed a positive effect of crab activity, sediment accretion, and a composite of depth and elevation on panne contraction, and a negative effect of panne size and distance to nearest panne. The positive crab effects detected in pannes contrast with negative effects we detected near creek edges in a previous study, highlighting the context-dependence of top-down and bioturbation effects in marshes. As global change continues and the magnitude and frequency of disturbances increases, understanding the dynamics of marsh loss in the marsh interior as well as creek banks will be critical for the management of these coastal habitats.


Sign in / Sign up

Export Citation Format

Share Document