Permafrost extent and active layer thickness variation in the Northern Hemisphere from 1969 to 2018

2022 ◽  
Vol 804 ◽  
pp. 150182
Author(s):  
Guanji Li ◽  
Mingyi Zhang ◽  
Wansheng Pei ◽  
Andrey Melnikov ◽  
Ivan Khristoforov ◽  
...  
2016 ◽  
Author(s):  
C. Schuh ◽  
A. Frampton ◽  
H. H. Christiansen

Abstract. High resolution field data for the period 2000–2014 consisting of active layer and permafrost temperature, active layer soil moisture, and thaw depth progression from the UNISCALM research site in Adventdalen, Svalbard, is combined with a physically-based coupled cryotic and hydrogeological model to investigate active layer dynamics. The site is a loess-covered river terrace characterized by dry conditions with little to no summer infiltration and an unsaturated active layer. A range of soil moisture characteristic curves consistent with loess sediments are considered and their effects on ice and moisture redistribution, heat flux, energy storage through latent heat transfer, and active layer thickness is investigated and quantified based on hydro-climatic site conditions. Results show that soil moisture retention characteristics exhibit notable control of ice distribution and circulation within the active layer by cryosuction subject to seasonal variability and site-specific surface temperature variations. The retention characteristics also impact unfrozen water and ice content in the permafrost. Although these effects lead to differences in thaw progression rates, the resulting inter-annual variability in active layer thickness is not large. Field data analysis reveals that variations in summer degree days do not notably affect the active layer thaw depths; instead, a cumulative winter degree day index is found to more significantly control inter-annual active layer thickness variation at this site. A tendency of increasing winter temperatures is found to cause a general warming of the subsurface down to 10 m depth (0.05 to 0.26 ˚C/yr, observed and modelled) including an increasing active layer thickness (0.8 cm/yr, observed and 0.3 to 0.8 cm/yr, modelled) during the 14-year study period.


2017 ◽  
Vol 31 (1) ◽  
pp. 251-266 ◽  
Author(s):  
Xiaoqing Peng ◽  
Tingjun Zhang ◽  
Oliver W. Frauenfeld ◽  
Kang Wang ◽  
Dongliang Luo ◽  
...  

Abstract Variability of active layer thickness (ALT) in permafrost regions is critical for assessments of climate change, water resources, and engineering applications. Detailed knowledge of ALT variations is also important for studies on ecosystem, hydrological, and geomorphological processes in cold regions. The primary objective of this study is therefore to provide a comprehensive 1971–2000 climatology of ALT and its changes across the entire Northern Hemisphere from 1850 through 2100. To accomplish this, in situ observations, the Stefan solution based on a thawing index, and the edaphic factor (E factor) are employed to calculate ALT. The thawing index is derived from (i) the multimodel ensemble mean of 16 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) over 1850–2005, (ii) three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) for 2006–2100, and (iii) Climatic Research Unit (CRU) gridded observations for 1901–2014. The results show significant spatial variability in in situ ALT that generally ranges from 40 to 320 cm, with some extreme values of 900 cm in the Alps. The differences in the ALT climatology between the three RCPs and the historical experiments ranged from 0 to 200 cm. The biggest increases, of 120–200 cm, are on the Qinghai–Tibetan Plateau, while the smallest increases of less than 20 cm are in Alaska. Averaged over all permafrost regions, mean ALT from CMIP5 increased significantly at 0.57 ± 0.04 cm decade−1 during 1850–2005, while 2006–2100 projections show ALT increases of 0.77 ± 0.08 cm decade−1 for RCP2.6, 2.56 ± 0.07 cm decade−1 for RCP4.5, and 6.51 ± 0.07 cm decade−1 for RCP8.5.


2016 ◽  
Vol 75 (7) ◽  
Author(s):  
Dongliang Luo ◽  
Qingbai Wu ◽  
Huijun Jin ◽  
Sergey S. Marchenko ◽  
Lanzhi Lü ◽  
...  

2021 ◽  
Author(s):  
Roshna B. Raj ◽  
Ashutosh Tripathi ◽  
Shiny Nair ◽  
Deepak Gupta ◽  
T. K. Shahana ◽  
...  

2017 ◽  
Vol 11 (1) ◽  
pp. 635-651 ◽  
Author(s):  
Carina Schuh ◽  
Andrew Frampton ◽  
Hanne Hvidtfeldt Christiansen

Abstract. High-resolution field data for the period 2000–2014 consisting of active layer and permafrost temperature, active layer soil moisture, and thaw depth progression from the UNISCALM research site in Adventdalen, Svalbard, is combined with a physically based coupled cryotic and hydrogeological model to investigate active layer dynamics. The site is a loess-covered river terrace characterized by dry conditions with little to no summer infiltration and an unsaturated active layer. A range of soil moisture characteristic curves consistent with loess sediments is considered and their effects on ice and moisture redistribution, heat flux, energy storage through latent heat transfer, and active layer thickness is investigated and quantified based on hydro-climatic site conditions. Results show that soil moisture retention characteristics exhibit notable control on ice distribution and circulation within the active layer through cryosuction and are subject to seasonal variability and site-specific surface temperature variations. The retention characteristics also impact unfrozen water and ice content in the permafrost. Although these effects lead to differences in thaw progression rates, the resulting inter-annual variability in active layer thickness is not large. Field data analysis reveals that variations in summer degree days do not notably affect the active layer thaw depths; instead, a cumulative winter degree day index is found to more significantly control inter-annual active layer thickness variation at this site. A tendency of increasing winter temperatures is found to cause a general warming of the subsurface down to 10 m depth (0.05 to 0.26 °C yr−1, observed and modelled) including an increasing active layer thickness (0.8 cm yr−1, observed and 0.3 to 0.8 cm yr−1, modelled) during the 14-year study period.


Sign in / Sign up

Export Citation Format

Share Document