scholarly journals Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard

2016 ◽  
Author(s):  
C. Schuh ◽  
A. Frampton ◽  
H. H. Christiansen

Abstract. High resolution field data for the period 2000–2014 consisting of active layer and permafrost temperature, active layer soil moisture, and thaw depth progression from the UNISCALM research site in Adventdalen, Svalbard, is combined with a physically-based coupled cryotic and hydrogeological model to investigate active layer dynamics. The site is a loess-covered river terrace characterized by dry conditions with little to no summer infiltration and an unsaturated active layer. A range of soil moisture characteristic curves consistent with loess sediments are considered and their effects on ice and moisture redistribution, heat flux, energy storage through latent heat transfer, and active layer thickness is investigated and quantified based on hydro-climatic site conditions. Results show that soil moisture retention characteristics exhibit notable control of ice distribution and circulation within the active layer by cryosuction subject to seasonal variability and site-specific surface temperature variations. The retention characteristics also impact unfrozen water and ice content in the permafrost. Although these effects lead to differences in thaw progression rates, the resulting inter-annual variability in active layer thickness is not large. Field data analysis reveals that variations in summer degree days do not notably affect the active layer thaw depths; instead, a cumulative winter degree day index is found to more significantly control inter-annual active layer thickness variation at this site. A tendency of increasing winter temperatures is found to cause a general warming of the subsurface down to 10 m depth (0.05 to 0.26 ˚C/yr, observed and modelled) including an increasing active layer thickness (0.8 cm/yr, observed and 0.3 to 0.8 cm/yr, modelled) during the 14-year study period.

2017 ◽  
Vol 11 (1) ◽  
pp. 635-651 ◽  
Author(s):  
Carina Schuh ◽  
Andrew Frampton ◽  
Hanne Hvidtfeldt Christiansen

Abstract. High-resolution field data for the period 2000–2014 consisting of active layer and permafrost temperature, active layer soil moisture, and thaw depth progression from the UNISCALM research site in Adventdalen, Svalbard, is combined with a physically based coupled cryotic and hydrogeological model to investigate active layer dynamics. The site is a loess-covered river terrace characterized by dry conditions with little to no summer infiltration and an unsaturated active layer. A range of soil moisture characteristic curves consistent with loess sediments is considered and their effects on ice and moisture redistribution, heat flux, energy storage through latent heat transfer, and active layer thickness is investigated and quantified based on hydro-climatic site conditions. Results show that soil moisture retention characteristics exhibit notable control on ice distribution and circulation within the active layer through cryosuction and are subject to seasonal variability and site-specific surface temperature variations. The retention characteristics also impact unfrozen water and ice content in the permafrost. Although these effects lead to differences in thaw progression rates, the resulting inter-annual variability in active layer thickness is not large. Field data analysis reveals that variations in summer degree days do not notably affect the active layer thaw depths; instead, a cumulative winter degree day index is found to more significantly control inter-annual active layer thickness variation at this site. A tendency of increasing winter temperatures is found to cause a general warming of the subsurface down to 10 m depth (0.05 to 0.26 °C yr−1, observed and modelled) including an increasing active layer thickness (0.8 cm yr−1, observed and 0.3 to 0.8 cm yr−1, modelled) during the 14-year study period.


Author(s):  
Richard H. Chen ◽  
Roger J. Michaelides ◽  
Yuhuan Zhao ◽  
Lingcao Huang ◽  
Elizabeth Wig ◽  
...  

2018 ◽  
Author(s):  
Sebastian A. Krogh ◽  
John W. Pomeroy

Abstract. The impact of observed changes in climate and vegetation on the hydrology of Arctic basins is often considered to be most sensitive at the tundra-taiga transition where the region is warmest and sub-arctic vegetation is nearest. This study uses weather and land cover observations and a cold regions hydrological model to investigate historical changes in modelled hydrological processes driving the streamflow response of a small Arctic permafrost-underlain basin at the tundra-taiga transition. The physical processes found in this environment and explicit changes in vegetation type and density were simulated and validated against observations of streamflow discharge, snow water equivalent and active layer thickness. Mean air temperature and all-wave irradiance have increased by 3.7 °C and 8.4 W m−2, respectively, while precipitation has decreased from 369 to 321 mm since 1960. Two modelling scenarios were created to separate the effects of changing climate and vegetation on hydrological processes. Results show that over 1960–2016 most hydrological changes were driven by climate changes, such as decreasing snowfall by 7.8 mm decade−1, deepening active layer thickness by 1.8–4.2 cm decade−1, earlier snowcover depletion and ground thaw initiation dates from 1.5 to 3 and by 1 to 3 days decade−1, respectively, and diminishing annual sublimation and soil moisture by 1.3 and 5.9 mm decade−1, respectively. Evapotranspiration decreased by 2.5 mm decade−1, due to decreasing irradiance and soil moisture. Shrub expansion and densification decreases blowing snow redistribution by 20 to 40 mm and sublimation by 1 to 10 mm. Streamflow dropped by 40 mm as a response to the 48 mm decrease in precipitation, suggesting a small degree of hydrological resiliency. These results represent the first detailed estimate of hydrological changes occurring in small Arctic basins, and can be used as a reference to inform other studies of Arctic climate change impacts.


2022 ◽  
Vol 804 ◽  
pp. 150182
Author(s):  
Guanji Li ◽  
Mingyi Zhang ◽  
Wansheng Pei ◽  
Andrey Melnikov ◽  
Ivan Khristoforov ◽  
...  

2012 ◽  
Vol 6 (4) ◽  
pp. 2537-2574 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of permafrost active layer thickness (ALT) during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while ALT in North American watersheds showed decreases. An opposition of ALT variations implicated with climate and hydrological variables was most significant when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher Annual Thawing Index in the Mackenzie and Yukon Basins was offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing Annual Thawing Index together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. While it is widely believed that ALT will increase with global warming, this hypothesis may need modification because the ALT also shows responses to variations in snow depth and soil moisture that can over-ride the effect of air temperature. The dependence of the hydrological variables driven by the atmosphere further increases the uncertainty in future changes of the permafrost active layer.


Author(s):  
T. Chang ◽  
J. Han ◽  
Z. Li ◽  
Y. Wen ◽  
T. Hao ◽  
...  

Abstract. Active layer thickness (ALT) is an important index to reflect the stability of permafrost. The retrieval of ALT based on Interferometric Synthetic Aperture Radar (InSAR) technology has been investigated recently in permafrost research. However, most of such studies are carried out in a limited extend and relatively short temporal coverage. The combination of temporal-spatial multi-layer soil moisture data and multi-temporal InSAR is a promising approach for the large-scale characterization of ALT. In this study, we employed Small Baseline Subset Interferometry (SBAS-InSAR) technology to obtain the seasonal surface deformation from radar images of Envisat and Sentinel-1 in a permafrost region of Qinghai-Tibet Plateau (QTP). We attempt to verify and calibrate the temporal-spatial multi-layer soil moisture product in combination with the in-situ data. Based on the land subsidence data and the temporal-spatial multi-layer soil moisture data, we further improve method to retrieve the ALT information. This paper describes the progress so far and point out the future work.


Sign in / Sign up

Export Citation Format

Share Document