retention characteristics
Recently Published Documents


TOTAL DOCUMENTS

678
(FIVE YEARS 96)

H-INDEX

41
(FIVE YEARS 5)

Warta Geologi ◽  
2021 ◽  
Vol 47 (3) ◽  
pp. 217-225
Author(s):  
John Kuna Raj

The weathering profile at the slope cut near Km 16 of the Kuala Lumpur - Ipoh trunk road can be differentiated into an upper, 11.8 m thick pedological soil (zone I) and a lower, 31.9 m thick saprock (zone II) comprising silty sandy gravels that distinctly preserve the minerals, textures and structures of the original granite. In order to investigate the influence of particle size distributions on soil moisture retention characteristics, saprock samples were collected at depths of 26.53 m (Sample A), 31.29 m (Sample B) and 41.93 m (Sample C). Samples A and B, with porosities of 37%, comprise 33% gravel, 27% sand, 22% silt and 18% clay, and 31% gravel, 24% sand, 25% silt and 22% clay, respectively. Sample C with a porosity of 44% consists of 24% gravel, 28% sand, 38% silt and 10% clay. Tests with the pressure plate method show increasing suctions from 0 kPa through 0.98 kPa and 9.8 kPa to 33 kPa and 1,500 kPa to result in gravimetric soil moisture retentions of 31.9% through 28.6% and 23.3% to 16.9% and 6.8% in sample A, of 32.1% through 24.9% and 21.5% to 17.8% and 7.4% in sample B, and of 31.5% through 30.3% and 27.30% to 23.5% and 9.5% in sample C. Regression analyses of gravel, sand and clay contents plotted against moisture contents retained at high suctions (33 kPa and 1,500 kPa) yield negative trends with variable correlation coefficients (R2), though plots involving silt contents yield positive trends with large correlation coefficients (R2 >0.9966). It is concluded that adsorption of water on surfaces of silt sized particles (of mainly sericite derived from weathering of feldspars) that gives rise to the retention of soil moisture in saprock.


2021 ◽  
Author(s):  
Teppei Otsuka ◽  
Suguru Masuzaki ◽  
N Ashikawa ◽  
Yuji Torikai ◽  
Yuji Hatano ◽  
...  

Abstract Tritium (T) retention characteristics in dust collected from the divertor in JET with ITER-like wall (JET-ILW) after the third campaign in 2015-2016 (ILW-3) have been examined in individual dust particles by combining radiography (tritium imaging plate technique) and electron probe micro-analysis. The results are summarized and compared with the data obtained after the first campaign in 2011-2012 (ILW-1). The dominant component in ILW-1 dust was carbon (C) originating from tungsten-coated carbon fibre composite (CFC) tiles in JET-ILW divertor and/or legacy of C dust after the JET operation with carbon wall. Around 85 % of the total tritium retention in ILW-1 dust was attributede to the C dust. The retention in tungsten (W) and beryllium (Be) dominated particles was 100 times smaller than the highest T retention in carbon-based particles. After ILW-3 the main component contributing to the T retention was W. The number of small W particles with T increased, in comparison to ILW-1, most probably by the exfoliation and fragmentation of W coatings on CFC tiles though T retention in individual W particles was smaller than in C particles. The detection of only very few Be-dominated dust particles found after ILW-1 and ILW-3 could imply stable Be deposits on the divertor tiles.


Author(s):  
Mohammad Aftab Baig ◽  
Hoang-Hiep Le ◽  
Sourav De ◽  
Che-Wei Chang ◽  
Chia-Chi Hsieh ◽  
...  

Abstract In this paper, multiple-fin n- and p-channel HfZrO2 ferroelectric-FinFET devices are manufactured using a gate first process with post metalization annealing. The device transfer characteristics upon program and erase operations are measured and modeled. The drift in the transfer characteristics due to depolarization field and charge injection are captured using the shift in the threshold voltage along with time-dependent modeling of vertical field dependent mobility degradation parameters to develop a physical, computationally efficient, and accurate retention model for ferroelectric-FinFET devices. The modeled conductance is incorporated into deep neural network simulation platform CIMulator to analyze the role of conductance drift due to retention degradation, as well as the importance of the gap between high and low conductance states in improving the image recognition accuracy of neural networks.


2021 ◽  
Author(s):  
Alpna Bisht ◽  
Chetna Hemrajani ◽  
Navneet Upadhyay ◽  
Prakriti Nidhi ◽  
Rajan Rolta ◽  
...  

Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3004
Author(s):  
Sae-Wan Kim ◽  
JinBeom Kwon ◽  
Jae-Sung Lee ◽  
Byoung-Ho Kang ◽  
Sang-Won Lee ◽  
...  

A cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dot (QD)-based multi-level memory device with the structure [ITO/PEDOT:PSS/QDs/ZnO/Al:Al2O3/QDs/Al] was fabricated via a spin-coating method used to deposit thin films. Two layers of QD thin films present in the device act as charge storage layers to form three distinct states. Zinc oxide (ZnO) and aluminum oxide (Al2O3) were added to prevent leakage. ZnO NPs provide orthogonality between the two QD layers, and a poly(3,4-ethylenedioxythio-phene): poly(styrenesulfonate) (PEDOT:PSS) thin film was formed for effective hole injection from the electrodes. The core/shell structure of the QDs provides the quantum well, which causes the trapping of injected charges. The resistance changes according to the charging and discharging of the QDs’ trap site and, as a result, the current through the device also changes. There are two quantum wells, two current changes, and three stable states. The role of each thin film was confirmed through I–V curve analysis and the fabrication conditions of each thin film were optimized. The synthesized QDs and ZnO nanoparticles were evaluated via X-ray diffraction, transmission electron microscopy, and absorbance and photoluminescence spectroscopy. The measured write voltages of the fabricated device were at 1.8 and 2.4 V, and the erase voltages were −4.05 and −4.6 V. The on/off ratio at 0.5 V was 2.2 × 103. The proposed memory device showed retention characteristics of ≥100 h and maintained the initial write/erase voltage even after 200 iterative operations.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
W. M. Moss ◽  
P. G. H. Nichols ◽  
M. H. Ryan ◽  
K. J. Foster ◽  
A. L. Guzzomi

Seed retention has not been evaluated for subterranean clover ( Trifolium subterraneum L.), because its geocarpic seed-bearing burrs are currently harvested by suction systems. Development of improved harvest methods requires knowledge of subterranean clover seed retention characteristics and their changes with plant development. This study evaluates burr attachment and peduncle tensile strength during burr maturity until plant senescence across the three subspecies: subterraneum (cv. Dalkeith), yanninicum (cv. Monti) and brachycalycinum (cv. Mawson). Peduncle tensile strength was greater than burr-to-peduncle attachment strength for each subspecies, with peak mean peduncle strength 30–130% greater than peak mean burr-to-peduncle attachment strength. Both strength measurements decreased significantly (greater than 50% for each subspecies) as the plant senesced, which was associated with reductions in burr moisture content, and burr and peduncle diameters. Microscopy indicated a ductile to brittle transition as peduncles senesced, reducing energy absorption and increasing the likelihood of failure at defects. These results are important for the commercial production of subterranean clover seed and suggest it may be possible to harvest seed before plant senescence with dig-invert machinery, similar to that used for peanut harvesting. However, this approach would require harvesting prior to maximum seed development and the implications for seed viability and yield need to be further evaluated.


EDIS ◽  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Haimanote K. Bayabil ◽  
Fitsum T. Tilahun ◽  
Yuncong Li ◽  
E. Vanessa Campoverde

This publication provides general information about differences in moisture retention characteristics and chemical properties of most common potting substrates used by the nursery industry in south Florida. Written by Haimanote K. Bayabil, Fitsum T. Tilahun, Yuncong Li, and E. Vanessa Campoverde, and published by the UF/IFAS Department of Agricultural and Biological Engineering, October 2021.


Sign in / Sign up

Export Citation Format

Share Document