Atmospheric transport reveals grass pollen dispersion distances

Author(s):  
Carl A. Frisk ◽  
Godfrey P. Apangu ◽  
Geoffrey M. Petch ◽  
Beverley Adams-Groom ◽  
Carsten A. Skjøth
2012 ◽  
Vol 9 (10) ◽  
pp. 14217-14253 ◽  
Author(s):  
C. A. Skjøth ◽  
P. V. Ørby ◽  
T. Becker ◽  
C. Geels ◽  
V. Schlünssen ◽  
...  

Abstract. We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres from this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urban scale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations of grass pollen in the urban zone reflects the source areas identified in the inventory, and that these pollen sources that are found to affect the pollen levels are located near and within the city domain. The results also show that during days with peak levels of pollen concentrations, there is no correlation between the three urban traps and an operational trap located just 60 km away. This finding suggests that during intense flowering, the grass pollen concentration mirrors the local source distribution, and is thus a local scale phenomenon. Model simulations aiming at assessment of population exposure to pollen levels are therefore recommended to take into account both local sources and local atmospheric transport, and not rely only on describing regional to long-range transport of pollen. The derived pollen source inventory can be entered into local scale atmospheric transport models in combination with other components that simulates pollen release in order to calculate urban scale variations in the grass pollen load. The gridded inventory with a resolution of 14 m is therefore made available as supplementary material to this paper, and the verifying grass pollen observations are in additional available in tabular form.


2020 ◽  
Vol 20 (4) ◽  
pp. 2099-2121 ◽  
Author(s):  
Alexander Kurganskiy ◽  
Carsten Ambelas Skjøth ◽  
Alexander Baklanov ◽  
Mikhail Sofiev ◽  
Annika Saarto ◽  
...  

Abstract. Information about distribution of pollen sources, i.e. their presence and abundance in a specific region, is important, especially when atmospheric transport models are applied to forecast pollen concentrations. The goal of this study is to evaluate three pollen source maps using an atmospheric transport model and study the effect on the model results by combining these source maps with pollen data. Here we evaluate three maps for the birch taxon: (1) a map derived by combining a land cover data and forest inventory, (2) a map obtained from land cover data and calibrated using model simulations and pollen observations, and (3) a statistical map resulting from analysis of forest inventory and forest plot data. The maps were introduced to the Enviro-HIRLAM (Environment – High Resolution Limited Area Model) as input data to simulate birch pollen concentrations over Europe for the birch pollen season 2006. A total of 18 model runs were performed using each of the selected maps in turn with and without calibration with observed pollen data from 2006. The model results were compared with the pollen observation data at 12 measurement sites located in Finland, Denmark, and Russia. We show that calibration of the maps using pollen observations significantly improved the model performance for all three maps. The findings also indicate the large sensitivity of the model results to the source maps and agree well with other studies on birch showing that pollen or hybrid-based source maps provide the best model performance. This study highlights the importance of including pollen data in the production of source maps for pollen dispersion modelling and for exposure studies.


2013 ◽  
Vol 10 (1) ◽  
pp. 541-554 ◽  
Author(s):  
C. A. Skjøth ◽  
P. V. Ørby ◽  
T. Becker ◽  
C. Geels ◽  
V. Schlünssen ◽  
...  

Abstract. We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urban-scale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations of grass pollen in the urban zone reflect the source areas identified in the inventory, and that the pollen sources that are found to affect the pollen levels are located near or within the city domain. The results also show that during days with peak levels of pollen concentrations there is no correlation between the three urban traps and an operational trap located just 60 km away. This finding suggests that during intense flowering, the grass pollen concentration mirrors the local source distribution and is thus a local-scale phenomenon. Model simulations aimed at assessing population exposure to pollen levels are therefore recommended to take into account both local sources and local atmospheric transport, and not to rely only on describing regional to long-range transport of pollen. The derived pollen source inventory can be entered into local-scale atmospheric transport models in combination with other components that simulate pollen release in order to calculate urban-scale variations in the grass pollen load. The gridded inventory with a resolution of 14 m is therefore made available as supplementary material to this paper, and the verifying grass pollen observations are additionally available in tabular form.


2019 ◽  
Author(s):  
Alexander Kurganskiy ◽  
Carsten Ambelas Skjøth ◽  
Alexander Baklanov ◽  
Mikhail Sofiev ◽  
Annika Saarto ◽  
...  

Abstract. Information about distribution of pollen sources, i.e. their presence and abundance in a specific region, is important especially when atmospheric transport models are applied to forecast pollen concentrations. The goal of this study is to evaluate three pollen source maps using an atmospheric transport model and study the effect on the model results by combining these source maps with pollen data. Here we evaluate three maps for the birch taxon: (1) a map derived by combining land cover data and forest inventory; (2) a map obtained from land cover data and calibrated using model simulations and pollen observations; (3) a statistical map resulting from analysis of forest inventory and forest plot data. The maps were introduced to the Enviro-HIRLAM (Environment – High Resolution Limited Area Model) as input data to simulate birch pollen concentrations over Europe for the birch pollen season 2006. 18 model runs were performed using each of the selected maps in turn with and without calibration with observed pollen data from 2006. The model results were compared with the pollen observation data at 12 measurement sites located in Finland, Denmark and Russia.We show that calibration of the maps using pollen observations significantly improved the model performance for all three maps. The findings also indicate the large sensitivity of the model results to the source maps and agree well with other studies on birch showing that pollen or hybrid-based source maps provide the best model performance. This study highlights the importance of including pollen data in the production of source maps for pollen dispersion modelling and for exposure studies.


Sign in / Sign up

Export Citation Format

Share Document