scholarly journals WNT and BMP signaling are both required for hematopoietic cell development from human ES cells

2009 ◽  
Vol 3 (2-3) ◽  
pp. 113-125 ◽  
Author(s):  
Yi Wang ◽  
Naoki Nakayama
2005 ◽  
Vol 2 (3) ◽  
pp. 185-190 ◽  
Author(s):  
Ren-He Xu ◽  
Ruthann M Peck ◽  
Dong S Li ◽  
Xuezhu Feng ◽  
Tenneille Ludwig ◽  
...  

2014 ◽  
Vol 12 (3) ◽  
pp. 630-637 ◽  
Author(s):  
Amita Tiyaboonchai ◽  
Helen Mac ◽  
Razveen Shamsedeen ◽  
Jason A. Mills ◽  
Siddarth Kishore ◽  
...  

2019 ◽  
Author(s):  
Alec K. Gramann ◽  
Arvind M. Venkatesan ◽  
Melissa Guerin ◽  
Craig J. Ceol

AbstractPreventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.


Author(s):  
Malkiel A. Cohen ◽  
Pavey Itsykson ◽  
Benjamin E. Reubinoff

2000 ◽  
Vol 113 (1) ◽  
pp. 5-10 ◽  
Author(s):  
M.F. Pera ◽  
B. Reubinoff ◽  
A. Trounson

Embryonic stem (ES) cells are cells derived from the early embryo that can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent; they share these properties with embryonic germ (EG) cells. Candidate ES and EG cell lines from the human blastocyst and embryonic gonad can differentiate into multiple types of somatic cell. The phenotype of the blastocyst-derived cell lines is very similar to that of monkey ES cells and pluripotent human embryonal carcinoma cells, but differs from that of mouse ES cells or the human germ-cell-derived stem cells. Although our understanding of the control of growth and differentiation of human ES cells is quite limited, it is clear that the development of these cell lines will have a widespread impact on biomedical research.


2002 ◽  
Vol 200 (3) ◽  
pp. 243-248 ◽  
Author(s):  
D. S. Kaufman ◽  
J. A. Thomson
Keyword(s):  
Es Cells ◽  

Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1207-1213 ◽  
Author(s):  
Isao Hamaguchi ◽  
Tohru Morisada ◽  
Masaki Azuma ◽  
Kyoko Murakami ◽  
Madoka Kuramitsu ◽  
...  

AbstractTie2 is a receptor-type tyrosine kinase expressed on hematopoietic stem cells and endothelial cells. We used cultured embryonic stem (ES) cells to determine the function of Tie2 during early vascular development and hematopoiesis. Upon differentiation, the ES cell–derived Tie2+Flk1+ fraction was enriched for hematopoietic and endothelial progenitor cells. To investigate lymphatic differentiation, we used a monoclonal antibody against LYVE-1 and found that LYVE-1+ cells derived from Tie2+Flk1+ cells possessed various characteristics of lymphatic endothelial cells. To determine whether Tie2 played a role in this process, we analyzed differentiation of Tie2-/- ES cells. Although the initial numbers of LYVE-1+ and PECAM-1+ cells derived from Tie2-/- cells did not vary significantly, the number of both decreased dramatically upon extended culturing. Such decreases were rescued by treatment with a caspase inhibitor, suggesting that reductions were due to apoptosis as a consequence of a lack of Tie2 signaling. Interestingly, Tie2-/- ES cells did not show measurable defects in development of the hematopoietic system, suggesting that Tie2 is not essential for hematopoietic cell development.


Sign in / Sign up

Export Citation Format

Share Document