terminal differentiation
Recently Published Documents


TOTAL DOCUMENTS

1585
(FIVE YEARS 148)

H-INDEX

107
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Julia Lachner ◽  
Florian Ehrlich ◽  
Matthias Wielscher ◽  
Matthias Farlik ◽  
Marcela Hermann ◽  
...  

AbstractThe growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.


mSystems ◽  
2022 ◽  
Author(s):  
George C. diCenzo ◽  
Lisa Cangioli ◽  
Quentin Nicoud ◽  
Janis H. T. Cheng ◽  
Matthew J. Blow ◽  
...  

Nitrogen fixation by rhizobia in symbiosis with legumes is economically and ecologically important. The symbiosis can involve a complex bacterial transformation—terminal differentiation—that includes major shifts in the transcriptome and cell cycle.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sydney Popsuj ◽  
Alberto Stolfi

Conserved transcription factors termed “terminal selectors” regulate neuronal sub-type specification and differentiation through combinatorial transcriptional regulation of terminal differentiation genes. The unique combinations of terminal differentiation gene products in turn contribute to the functional identities of each neuron. One well-characterized terminal selector is COE (Collier/Olf/Ebf), which has been shown to activate cholinergic gene batteries in C. elegans motor neurons. However, its functions in other metazoans, particularly chordates, is less clear. Here we show that the sole COE ortholog in the non-vertebrate chordate Ciona robusta, Ebf, controls the expression of the cholinergic locus VAChT/ChAT in a single dorsal interneuron of the larval Motor Ganglion, which is presumed to be homologous to the vertebrate spinal cord. We propose that, while the function of Ebf as a regulator of cholinergic neuron identity conserved across bilaterians, its exact role may have diverged in different cholinergic neuron subtypes (e.g., interneurons vs. motor neurons) in chordate-specific motor circuits.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Elitsa Stoyanova ◽  
Michael Riad ◽  
Anjana Rao ◽  
Nathaniel Heintz

Although high levels of 5-hydroxymethylcytosine (5hmC) accumulate in mammalian neurons, our knowledge of its roles in terminal differentiation or as an intermediate in active DNA demethylation is incomplete. We report high-resolution mapping of DNA methylation and hydroxymethylation, chromatin accessibility, and histone marks in developing postmitotic Purkinje cells (PCs) in Mus musculus. Our data reveal new relationships between PC transcriptional and epigenetic programs, and identify a class of genes that lose both 5-methylcytosine (5mC) and 5hmC during terminal differentiation. Deletion of the 5hmC writers Tet1, Tet2, and Tet3 from postmitotic PCs prevents loss of 5mC and 5hmC in regulatory domains and gene bodies, and hinders transcriptional and epigenetic developmental transitions. Our data demonstrate that Tet-mediated active DNA demethylation occurs in vivo, and that acquisition of the precise molecular properties of adult PCs require continued oxidation of 5mC to 5hmC during the final phases of differentiation.


2021 ◽  
Author(s):  
Emi Sato ◽  
Shinichi Imafuku

Immunotherapies targeting interleukin 17 (IL-17) have a strong effect on plaque psoriasis. However, many previous studies on IL-17 focused only on the T-helper 17 (Th17) immune response, and a few studies have reported that IL-17A may affect psoriatic epidermal structure. IL-17 includes six family members, namely IL-17A–F, which are involved in a wide variety of biological responses. IL-17A is produced mainly by Th17 cells or group 3 innate lymphoid cells (ILC3), while IL-17C is locally produced by epithelial cells, such as keratinocytes. In contrast to IL-17C, which is locally produced in various cells such as keratinocytes, it is predicted that IL-17A, which is produced by limited cells and has systemic effects, has different roles in epidermal development. For example, several research studies have shown that IL-17A affects terminal differentiation of epidermis by suppressing the expression of filaggrin or loricrin in keratinocytes. On the other hand, IL-17C, which is produced by keratinocytes themselves, does not have as strong as an effect on epidermal development as IL-17A. In this chapter, we summarized the effects of IL-17A and other IL-17 members on epidermal development and their comprehensive roles based on previously reported papers.


Biology Open ◽  
2021 ◽  
Author(s):  
Konstantina Filippopoulou ◽  
Carole Couillault ◽  
Vincent Bertrand

Neural bHLH transcription factors play a key role in the early steps of neuronal specification in many animals. We have previously observed that the Achaete-Scute HLH-3, the Olig HLH-16 and their binding partner the E protein HLH-2 activate the terminal differentiation program of a specific class of cholinergic neurons, AIY, in C. elegans. Here we identify a role for a fourth bHLH, the Neurogenin NGN-1, in this process, raising the question of why so many neural bHLHs are required for a single neuronal specification event. Using quantitative imaging we show that the combined action of different bHLHs is needed to activate the correct level of expression of the terminal selector transcription factors TTX-3 and CEH-10 that subsequently initiate and maintain the expression of a large battery of terminal differentiation genes. Surprisingly, the different bHLHs have an antagonistic effect on another target, the proapoptotic BH3-only factor EGL-1, normally not expressed in AIY and otherwise detrimental for its specification. We propose that the use of multiple neural bHLHs allows robust neuronal specification while, at the same time, preventing spurious activation of deleterious genes.


2021 ◽  
Author(s):  
Berta Vidal ◽  
Burcu Gulez ◽  
Wen Xi Cao ◽  
Eduardo Leyva Diaz ◽  
Tessa Tekieli ◽  
...  

Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode C. elegans that resides within the foregut (pharynx) of the worm. A Caenorhabditis elegans homolog of the Drosophila Sine Oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly, without affecting panneuronal features. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine Oculis homolog, our findings invite speculations about the early evolution of nervous systems.


Author(s):  
Qian Zhang ◽  
Zhen Huang ◽  
Huanyan Zuo ◽  
Yuxiu Lin ◽  
Yao Xiao ◽  
...  

Embryonic development and stem cell differentiation are orchestrated by changes in sequential binding of regulatory transcriptional factors to their motifs. These processes are invariably accompanied by the alternations in chromatin accessibility, conformation, and histone modification. Odontoblast lineage originates from cranial neural crest cells and is crucial in dentinogenesis. Our previous work revealed several transcription factors (TFs) that promote odontoblast differentiation. However, it remains elusive as to whether chromatin accessibility affects odontoblast terminal differentiation. Herein, integration of single-cell RNA-seq and bulk RNA-seq revealed that in vitro odontoblast differentiation using dental papilla cells at E18.5 was comparable to the crown odontoblast differentiation trajectory of OC (osteocalcin)-positive odontogenic lineage. Before in vitro odontoblast differentiation, ATAC-seq and H3K27Ac CUT and Tag experiments demonstrated high accessibility of chromatin regions adjacent to genes associated with odontogenic potential. However, following odontoblastic induction, regions near mineralization-related genes became accessible. Integration of RNA-seq and ATAC-seq results further revealed that the expression levels of these genes were correlated with the accessibility of nearby chromatin. Time-course ATAC-seq experiments further demonstrated that odontoblast terminal differentiation was correlated with the occupation of the basic region/leucine zipper motif (bZIP) TF family, whereby we validated the positive role of ATF5 in vitro. Collectively, this study reports a global mapping of open chromatin regulatory elements during dentinogenesis and illustrates how these regions are regulated via dynamic binding of different TF families, resulting in odontoblast terminal differentiation. The findings also shed light on understanding the genetic regulation of dentin regeneration using dental mesenchymal stem cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Liu ◽  
Brian Debo ◽  
Mingfeng Li ◽  
Zhennan Shi ◽  
Wanqiang Sheng ◽  
...  

AbstractExhausted CD8+ T cells are key targets of immune checkpoint blockade therapy and their ineffective reinvigoration limits the durable benefit in some cancer patients. Here, we demonstrate that histone demethylase LSD1 acts to enforce an epigenetic program in progenitor exhausted CD8+ T cells to antagonize the TCF1-mediated progenitor maintenance and to promote terminal differentiation. Consequently, genetic perturbation or small molecules targeting LSD1 increases the persistence of the progenitor exhausted CD8+ T cells, which provide a sustained source for the proliferative conversion to numerically larger terminally exhausted T cells with tumor-killing cytotoxicity, thereby leading to effective and durable responses to anti-PD1 therapy. Collectively, our findings provide important insights into epigenetic mechanisms that regulate T cell exhaustion and have important implications for durable immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document