scholarly journals Generation of eight human induced pluripotent stem cell lines from Parkinson's disease patients carrying familial mutations

2020 ◽  
Vol 42 ◽  
pp. 101657 ◽  
Author(s):  
Muwan Chen ◽  
Muyesier Maimaitili ◽  
Susanne Hvolbøl Buchholdt ◽  
Uffe Birk Jensen ◽  
Fabia Febbraro ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261536
Author(s):  
Charlotte Vajhøj ◽  
Benjamin Schmid ◽  
Ania Alik ◽  
Ronald Melki ◽  
Karina Fog ◽  
...  

Inhibiting formation or promoting degradation of α-synuclein aggregates are among the therapeutical approaches under investigation as disease-modifying treatment strategies for Parkinson’s disease. To support these developments, several in vitro models based on seeded α-synuclein aggregation have been established in immortalized cell lines and murine primary neurons. Here, we report on a humanized model with a reproducibility and throughput that enables its use in supporting target identification and validation in pharmacological research. A human induced pluripotent stem cell (iPSC) line was genetically modified to express HA-tagged α-synuclein with the point mutation in position 53 from Alanine to Threonine (A53T) under an inducible system and differentiated into cortical neurons expressing neuronal markers and exhibiting spontaneous activity. Intracellular α-synuclein aggregation was triggered by exposure to exogenous added fibrillated recombinant wild-type human α-synuclein fibrils91 and demonstrated by several endpoints; the formation of Triton-insoluble SDS-soluble α-synuclein, biochemically in a fluorescence resonance energy transfer based aggregation assay and by immunocytochemistry of phosphorylated α-synuclein positive puncta. We demonstrate the feasibility of upscaling the iPSC neuron production for drug discovery and that the model has a suitable dynamic range allowing for both detection of increased and decreased α-synuclein aggregation. Moreover, gene modulation is feasible using siRNAs, making the model suitable for genetic screening for modulators of α-synuclein aggregation. Data on effects of USP8, USP13 and USP9X knockdown on α-synuclein expression and aggregation contradicts published data from immortalized cell lines and murine systems. This highlight the importance of including humanized neuronal models in the confirmation of biological mechanisms in specific variations of Parkinson’s disease.


2021 ◽  
pp. 102402
Author(s):  
Gema Mondéjar-Parreño ◽  
James W.S. Jahng ◽  
Nadjet Belbachir ◽  
Blake C. Wu ◽  
Xiaolan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document