In situ observation of stress induced grain boundary migration in nanocrystalline gold

2017 ◽  
Vol 134 ◽  
pp. 95-99 ◽  
Author(s):  
Lihua Wang ◽  
Tianjiao Xin ◽  
Deli Kong ◽  
Xinyu Shu ◽  
Yanhui Chen ◽  
...  
1996 ◽  
Vol 82 (6) ◽  
pp. 471-474 ◽  
Author(s):  
Katsushi ICHIKAWA ◽  
Toshiyuki UEDA ◽  
Sadahiro TSUREKAWA ◽  
Yasunari YOSHITOMI ◽  
Yukio MATSUO ◽  
...  

2005 ◽  
Vol 495-497 ◽  
pp. 1249-1254 ◽  
Author(s):  
Henryk Paul ◽  
Julian H. Driver ◽  
Arnaud Lens

The crystallography of recrystallization nucleation has been investigated in channel-die deformed pure aluminium bicrystals with {100}<011>/{110}<001> and {100}<001>/{110}<001> orientations. The new grain orientations and misorientations were followed by systematic local orientation measurements using SEM and semi-automatic measurements in a TEM. In particular, orientation mapping combined with in-situ sample heating was used to investigate the formation and growth of new grains and their crystallographic orientation changes at very early stages of recrystallization. Grain boundary migration and ‘consumption’ of the as-deformed areas was always favoured along directions parallel to the traces of the {111} slip planes that had been most active during deformation. The orientations of the first formed nuclei were misoriented with respect to the orientations identified within the neighbouring deformed areas by α(<111>, <112>, or <100>)relations.


2020 ◽  
Vol 199 ◽  
pp. 42-52 ◽  
Author(s):  
Q. Zhu ◽  
S.C. Zhao ◽  
C. Deng ◽  
X.H. An ◽  
K.X. Song ◽  
...  

2004 ◽  
Vol 467-470 ◽  
pp. 911-916 ◽  
Author(s):  
Václav Paidar ◽  
Pavel Lejček ◽  
M. Polcarová ◽  
J. Brádler ◽  
Alain Jacques

Grain boundary motion was studied in situ at elevated temperatures by x-ray topography using synchrotron radiation. In addition to the position of grain boundary, other crystal defects that may interact with the moving boundary were observed simultaneously. Two types of bicrystals with the [001] rotation axis were selected for the experiments, the first one with a high coincidence S5 misorientation of about 37° and the other one with no coincidence of two crystals for the misorientation of 45°. The geometrical differences between chosen bicrystals are examined and attention is also paid to faceting – local orientations of the boundary plane.


Author(s):  
Hideki Ichinose ◽  
Tokuji Kizuka ◽  
Yoichi Ishida

A high resolution high temperature specimen stage of 200kV HRTEM was newly designed and produced in order to investigate the physical and mechanical nature of materials at high temperature.The atomic process of silicon grain boundary migration and the structure change was successfully observed in-situ at 1000K by the new specimen stage.The high temperature specimen stage consists of a heating specimen holder, a high stability power supply and a high stability current controller. Heat is provided by an induction free double spiral coil heater which is made of tungsten. Excellent current stability, better than 10−6 , prevents the objective lens from the magnetic disturbance which is caused by heating current. The highest temperature of the specimen is designed to be 1100K. The accuracy of the temperature measurement is checked by the melting test of tin. In order to keep the high resolution of the microscope(JEM-200CX) at such high temperature as 1100K an objective lens is also newly designed and produced. Aberration constants of the new lens are respectively Cs=0.7mm and Cc=1.2mm. Resulted resolution at high temperature is as same level as the that of the original JEM-200CX at room temperature. Images are recorded by a video tape recorder.


1991 ◽  
Vol 37 (1-4) ◽  
pp. 294-309 ◽  
Author(s):  
T.M. Lillo ◽  
S.A. Hackney ◽  
M.R. Plichta

1988 ◽  
Vol 143 ◽  
Author(s):  
C. L. Bauer ◽  
J. Gastaldi ◽  
C. Jourdan ◽  
G. Grange

AbstractGrain boundary migration has been investigated in prestrained monocrystalline specimens of aluminum in situ, continuously and at temperatures ranging from 415 to 610°C by synchrotron (polychromatic) x-ray topography (SXRT). In general, new (recrystallized) grains nucleate at prepositioned surface indentations and expand into the prestrained matrix, revealing complex evolution of crystallographic facets and occasional generation of (screw) dislocations in the wake of the moving boundaries. Analysis of corresponding migration rates for several faceted grain boundaries yields activation energies ranging from 56 to 125 kCal/mole, depending on grain boundary character. it is concluded that grain boundary mobility is a sensitive function of grain boundary inclination, resulting in ultimate survival of low-mobility (faceted) inclinations as a natural consequence of growth selection. Advantages and disadvantages associated with measurement of grain boundary migration by SXRT are enumerated and corresponding results are interpreted in terms of fundamental relationships between grain boundary structure and corresponding migration kinetics.


Sign in / Sign up

Export Citation Format

Share Document