Multiple provenance of rift sediments in the composite basin-mountain system: Constraints from detrital zircon U-Pb geochronology and heavy minerals of the early Eocene Jianghan Basin, central China

2017 ◽  
Vol 349 ◽  
pp. 46-61 ◽  
Author(s):  
Lulu Wu ◽  
Lianfu Mei ◽  
Yunsheng Liu ◽  
Jin Luo ◽  
Caizheng Min ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
pp. 125-139 ◽  
Author(s):  
Min Wang ◽  
Wenfei Guo ◽  
Wentao Yang

AbstractThe Qinling Orogen and the Jiyuan Basin constitute a basin-mountain system during the Early Mesozoic. Therefore, sediments from the Jiyuan Basin can be used to deduce the orogenic process of the Qinling Orogen. This paper attempts to use detrital zircon trace elements with ages ranging from the Late Carboniferous to the Middle Triassic that were obtained from the Jiyuan Basin to discuss the tectonic evolution of Qinling Orogen. On the tectonic setting discriminating diagrams, most grains are concentrated in convergent continental margins/orogenic settings,whereas the remaining samples (268 Ma, 265Ma, 264 Ma and 254Ma) are plotted in anorogenic field. Compared to the Early Paleozoic (400-500Ma) zircons, 306Ma and 281Ma grains represent higher Th/ Nb ratios, which might be related to the Mianlve oceanic crust subduction. The lower Th/Nb ratios containing 268 Ma, 265Ma, 264 Ma and 254Ma grains might indicate lithospheric extension subsequently. The final continent-continent collision between South China and North China blocks took place after the Middle Triassic (242Ma).


2021 ◽  
Author(s):  
Goran Andjic ◽  
Renjie Zhou ◽  
Tara N. Jonell ◽  
Jonathan C. Aitchison

<p>Pre-early Eocene volcaniclastic rocks exposed in the Indus Suture Zone (Ladakh, India) are key to deciphering the complex magmatic and tectonic evolution of the convergent margins that existed between India and Eurasia. Several hypotheses exist regarding the provenance of the middle Cretaceous to early Cenozoic Jurutze and Nindam formations yet there is presently no consensus. Leading models propose that: (a) they were either formed in neighbouring sub-basins at one convergent margin consisting of the Kohistan-Ladakh-Dras arc; or (b) they became stratigraphically superposed after the collision between the Kohistan-Ladakh and Dras arcs. Here we present new U-Pb detrital zircon, major and trace element geochemical, and petrographic datasets from the Nindam and Jurutze formations that support a disparate provenance and thus necessitate an alternative model. The Jurutze Fm. has a geochemical composition typical of arcs built on continental crust, whereas the Nindam Fm. presents a geochemical signature compatible with that of an intraoceanic arc. The significant age gap between these formations (>20 m.y.) in the Zanskar Gorge further precludes the possibility that the Jurutze Fm. was deposited on top of the Nindam Fm. We propose that the Nindam and Jurutze formations were deposited in distinct forearc basins and explore scenarios for their formation at separate convergent margins, i.e. the separate Kohistan-Ladakh and Dras arcs, respectively.</p>


2012 ◽  
Vol 570-571 ◽  
pp. 65-77 ◽  
Author(s):  
Yuntao Tian ◽  
Nansheng Qiu ◽  
Barry P. Kohn ◽  
Chuanqing Zhu ◽  
Shengbiao Hu ◽  
...  

2021 ◽  
Author(s):  
Kai Yan ◽  
Chun-lian Wang ◽  
Jiu-yi Wang ◽  
Xiao-can Yu ◽  
Xiao-hua Teng ◽  
...  

Abstract This paper intends to learn about the provenance, tectonic setting and paleoenvironment of the Paleocene Shashi Formation in the southern Jianghan Basin by the bulk-rock geochemistry. The K2O/Al2O3 and SiO2/Al2O3 ratios indicate that the major proportion of samples are litharenite. The chondrite-normalized REE distribution pattern of the Shashi Formation’s mudstones are characterized by enriched LREE and flat HREE similar to those of UC with negative Eu anomalies. Combined with the geochemical element ratio discriminant diagram, such as Al2O3-TiO2, Zr-TiO2, La/Sc-Co/Th, and Hf-La/Th, so on, these samples were sourced from mixed felsic/basic rock. Moreover, the discriminant diagrams of K2O/Na2O-SiO2/Al2O3, La-Th-Sc, and Th-Co-Zr/10 suggest that the samples were formed under the tectonic settings of active continental margin and continental island arc. The values of CIA, CIW, PIA, ICV, Zr/Sc-Th/Sc, and ternary diagrams of A-(CN)-K and Al2O3-Zr-TiO2 indicate that weathering in the source area was weak and source rocks have not been reformed by depositional recirculation and hydraulic sorting. And the palaeoenvironmental indicators of C-value, Ni/Co, V/Cr, V/(V+Ni) and Sr/Cu, Ga/Rb indicate that the climate was cool and arid during the evaporite deposition period in the southern Jianghan Basin, and the water was in the condition of oxidation.


Author(s):  
Gourab Bhattacharya ◽  
Delores M. Robinson ◽  
Matthew M. Wielicki

The timing of the India-Asia collision is greatly debated and is critical for elucidating early orogenic processes. This study documents, for the first time, evidence of India-Asia detrital mixing in the continental sedimentary rocks of the India-Asia collision zone of NW India at ca. 50 Ma and presents the largest detrital zircon (DZ) U-Pb age data set (n = 1225) from the region. Our DZ U-Pb age spectra from the early Eocene−late Oligocene continental Indus Group reveal a hybrid India-Asia provenance. The dominant Mesozoic−Cenozoic DZ peaks are ca. 107 Ma, 100−80 Ma, 60−50 Ma, 40 Ma, and 26 Ma, and they are mostly derived from Asia. The primary Precambrian DZ peaks are ca. 2.5 Ga, 1.2−0.95 Ga, 0.78−0.63 Ga, and 0.55 Ga and are representative of Tethyan Himalayan rocks on Greater India. Maximum depositional ages (MDAs) for four key Indus Group units, the Nurla, Hemis, Basgo, and Temesgam Formations, support syn-orogenic deposition in the Indus Basin from early Eocene to at least late Oligocene time. The Nurla Formation, with an MDA of ca. 50 Ma, records the first arrival of Greater Indian zircons on the Asian plate, thereby indicating uplift and erosion along the subducting Indian plate and collision of India with Asia by ca. 50 Ma. The ca. 27−26 Ma zircons in the younger late Oligocene Basgo and Temesgam Formations were contributed by the Lhasa terrane in south Tibet, which implies that the Indus River flowed from east to west across NW India at least by ca. 27 Ma.


Tectonics ◽  
2020 ◽  
Vol 39 (2) ◽  
Author(s):  
Lulu Wu ◽  
Lianfu Mei ◽  
Douglas A. Paton ◽  
Yunsheng Liu ◽  
Chuanbo Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document