forearc basins
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Eldridge M. Moores ◽  
Nathan Simmons ◽  
Asish R. Basu ◽  
Robert T. Gregory

ABSTRACT Ophiolite complexes represent fragments of ocean crust and mantle formed at spreading centers and emplaced on land. The setting of their origin, whether at midocean ridges, back-arc basins, or forearc basins has been debated. Geochemical classification of many ophiolite extrusive rocks reflect an approach interpreting their tectonic environment as the same as rocks with similar compositions formed in various modern oceanic settings. This approach has pointed to the formation of many ophiolitic extrusive rocks in a supra-subduction zone (SSZ) environment. Paradoxically, structural and stratigraphic evidence suggests that many apparent SSZ-produced ophiolite complexes are more consistent with mid-ocean ridge settings. Compositions of lavas in the southeastern Indian Ocean resemble those of modern SSZ environments and SSZ ophiolites, although Indian Ocean lavas clearly formed in a mid-ocean ridge setting. These facts suggest that an interpretation of the tectonic environment of ophiolite formation based solely on their geochemistry may be unwarranted. New seismic images revealing extensive Mesozoic subduction zones beneath the southern Indian Ocean provide one mechanism to explain this apparent paradox. Cenozoic mid-ocean-ridge–derived ocean floor throughout the southern Indian Ocean apparently formed above former sites of subduction. Compositional remnants of previously subducted mantle in the upper mantle were involved in generation of mid-ocean ridge lavas. The concept of historical contingency may help resolve the ambiguity on understanding the environment of origin of ophiolites. Many ophiolites with “SSZ” compositions may have formed in a mid-ocean ridge setting such as the southeastern Indian Ocean.


Geosphere ◽  
2021 ◽  
Author(s):  
Darby P. Scanlon ◽  
John Bershaw ◽  
Ray E. Wells ◽  
Ashley R. Streig

The Portland and Tualatin basins are part of the Salish-Puget-Willamette Lowland, a 900-km-long, forearc depression lying between the volcanic arc and the Coast Ranges of the Cascadia convergent margin. Such inland seaways are characteristic of warm, young slab subduction. We analyzed the basins to better understand their evolution and relation to Coast Range history and to provide an improved tectonic framework for the Portland metropolitan area. We model three key horizons in the basins: (1) the top of the Columbia River Basalt Group (CRBG), (2) the bottom of the CRBG, and (3) the top of Eocene basement. Isochore maps constrain basin depocenters during (1) Pleistocene to mid-Miocene time (0–15 Ma), (2) CRBG (15.5–16.5 Ma), and (3) early Miocene to late Eocene (ca. 17–35 Ma) time. Results show that the Portland and Tualatin basins have distinct mid-Miocene to Quaternary depocenters but were one continuous basin from the Eocene until mid-Miocene time. A NW-striking gravity low coincident with the NW-striking, fault-bounded Portland Hills anticline is interpreted as an older graben coincident with observed thickening of CRBG flows and underlying sedimentary rocks. Neogene transpression in the forearc structurally inverted the Sylvan-Oatfield and Portland Hills normal faults as high-angle dextral-reverse faults, separating the Portland and Tualatin basins. An eastward shift of the forearc basin depocenter and ten-fold decrease in accommodation space provide temporal constraints on the emergence of the Coast Range to the west. Clockwise rotation and northward transport of the forearc is deforming the basins and producing local earthquakes beneath the metropolitan area.


2021 ◽  
Author(s):  
Goran Andjic ◽  
Renjie Zhou ◽  
Tara N. Jonell ◽  
Jonathan C. Aitchison

<p>Pre-early Eocene volcaniclastic rocks exposed in the Indus Suture Zone (Ladakh, India) are key to deciphering the complex magmatic and tectonic evolution of the convergent margins that existed between India and Eurasia. Several hypotheses exist regarding the provenance of the middle Cretaceous to early Cenozoic Jurutze and Nindam formations yet there is presently no consensus. Leading models propose that: (a) they were either formed in neighbouring sub-basins at one convergent margin consisting of the Kohistan-Ladakh-Dras arc; or (b) they became stratigraphically superposed after the collision between the Kohistan-Ladakh and Dras arcs. Here we present new U-Pb detrital zircon, major and trace element geochemical, and petrographic datasets from the Nindam and Jurutze formations that support a disparate provenance and thus necessitate an alternative model. The Jurutze Fm. has a geochemical composition typical of arcs built on continental crust, whereas the Nindam Fm. presents a geochemical signature compatible with that of an intraoceanic arc. The significant age gap between these formations (>20 m.y.) in the Zanskar Gorge further precludes the possibility that the Jurutze Fm. was deposited on top of the Nindam Fm. We propose that the Nindam and Jurutze formations were deposited in distinct forearc basins and explore scenarios for their formation at separate convergent margins, i.e. the separate Kohistan-Ladakh and Dras arcs, respectively.</p>


2021 ◽  
Author(s):  
Attila Balazs ◽  
Claudio Faccenna ◽  
Taras Gerya ◽  
Kosuke Ueda ◽  
Francesca Funiciello

<p>The dynamics of oceanic and continental subduction zones is linked to the rise and demise of forearc and backarc basins in the overriding plate. Subsidence and uplift rates of these distinct sedimentary basins are controlled by variations in plate convergence and subduction velocities and determined by lithospheric rheological structure and different lithospheric thicknesses.</p><p>In this study we conducted a series of high-resolution 2D numerical models applying the thermo-mechanical code 2DELVIS (Gerya and Yuen, 2007). The model, based on finite differences and marker-in-cell techniques, solves the mass, momentum, and energy conservation equations for incompressible media; assumes elasto-visco-plastic rheologies and involves erosion, sedimentation and hydration processes.</p><p>The models show the evolution of wedge-top basins lying on top of the accretionary wedge and retro-forearc basins in the continental overriding plate, separated by a forearc high. These forearc regions are affected by repeated compression and extension phases. Higher subsidence rates are recorded in the syncline structure of the retro-forearc basin when the slab dip angle is higher and the subduction interface is stronger and before the slab reaches the 660 km discontinuity. This implies the importance of the slab suction force as the main forcing factor creating up to 3-4 km negative dynamics topographic signals.</p><p>Extensional back-arc basins are either localized along inherited crustal or lithospheric weak zones at large distance from the forearc region or are initiated just above the hydrated mantle wedge. During trench retreat and slab roll-back the older volcanic arc area becomes part of the back-arc region. Back-arc subsidence is primarily governed by crustal and lithospheric thinning controlled by slab roll-back. Onset of continental subduction and soft collision is linked to the rapid uplift of the forearc basins; however, the back-arc region records ongoing extension. Finally, during hard collision the forarc and back-arc basins are ultimately under compression.</p><p>Our results are compared with the evolution of the Mediterranean and based on the reconstructed plate kinematics, subsidence and heat flow evolution we classify the Western and Eastern Alboran, Paola and Tyrrhenian, Transylvanian and Pannonian Basins to be genetically similar forearc–backarc basins, respectively.</p>


2021 ◽  
Author(s):  
D.P. Scanlon ◽  
et al.

<div>Table S1 contains links to publicly available data sources used in this study. Table S2 contains well names, surface elevations, and stratigraphic picks for surfaces described in the text.<br></div><div><br></div><div><br></div><div><br></div>


2021 ◽  
Author(s):  
D.P. Scanlon ◽  
et al.

<div>Table S1 contains links to publicly available data sources used in this study. Table S2 contains well names, surface elevations, and stratigraphic picks for surfaces described in the text.<br></div><div><br></div><div><br></div><div><br></div>


2020 ◽  
pp. SP505-2019-117
Author(s):  
Tomoyuki Sato ◽  
Seishiro Furuyama ◽  
Junko Komatsubara ◽  
Masanori Ozaki ◽  
Kazuo Yamaguchi

AbstractThe Boso Peninsula is located in central Japan near the junction of the subduction boundary of three tectonic plates. A forearc basin has been developing there since 3 Ma and has been uplifting since 1 Ma. The basal surface of the Holocene deposits in the offshore area was investigated based on a seismic survey and is very similar to the adjacent land areas (the Iioka Plateau, the Kujukuri Plain and the Kazusa Hills). The basal surface in the Kujukuri Plain and its corresponding offshore area contains many incised valleys. Most of them extend southeastward, parallel to the direction from the hinterland to the ocean, but one incised valley (Kujukuri-oki Buried Valley) lies perpendicular to the others. A buried terrace is located SE of the valley and along the area where mudstone (of the Kiwada Formation) is distributed. The present observations indicate that differential erosion formed the terrace, after which the valley bent to follow the terrace. The rivers tend to be perpendicular to the strike of the sediment in the forearc basin owing to tectonic movement. Thus, the valley must have been incised into the underlying strata with a perpendicular strike and may have become bent in uplifting forearc basins.


2020 ◽  
Vol 47 (2) ◽  
pp. 207
Author(s):  
Esteban Salazar ◽  
Paulina Vásquez ◽  
Daniela Vallejos ◽  
Christian Creixell ◽  
Verónica Oliveros ◽  
...  

Triassic rock units of northern Chile (28-29° S) record the transition, both in time and space, between two major orogenies that affected the southwestern margin of South America, the Gondwanian and Andean orogenies. The geodynamic configuration of the margin during this transition is still a matter of debate, particularly whether subduction was interrupted or continued under different parameters in between the orogenies. In order to evaluate these hypotheses by understanding the paleogeographic evolution of the margin, this work synthesizes recent stratigraphical, structural and geochronological data from northern Chile (28-29° S), along with detrital zircon analysis and detritus characterization of the two main siliciclastic Triassic basins present in the area. A detailed study of the evolution of the San Félix and the Canto del Agua basins, their source areas, and exhumation processes of the margin recognizes two stages of intra-arc/forearc basins system development separated by a Carnian unconformity. The first stage (Lopingian-uppermost Middle Triassic) develops an eastern intra-arc basin, which is represented by the volcaniclastic rocks included in the Guanaco Sonso Formation and the roots of the volcanic arc represented by Chollay Plutonic Complex, bounded to the east by a Pennsylvanian-Cisuralian basement block. The forearc basin for this stage is constituted by two graben depocenter, separated by a topographic high, of marine to transitional depositional environment and proximal sediment sources. The eastern graben is filled by conglomerates and turbiditic rocks grouped in Members M1 to M4 of the San Félix Formation, and the western graben, by sedimentary and volcanic rocks of the lower section of the Canto del Agua Formation. The second stage (Norian-Rhaetian) involves an eastern intra-arc basin, represented by the volcanic rocks of the La Totora Formation that seals the exhumed roots of the magmatic arc developed in the previous stage, and a marine to transitional forearc basin to the west, represented by the sedimentary rocks of M5 member of the San Félix Formation and the upper section of the Canto del Agua Formation. These two successions show basal fluvial conglomerates unconformably overlying Anisian prodelta deposits of the first stage, recording a major base level drop of the forearc basin.


Lithosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 180-197 ◽  
Author(s):  
Daniel S. Coutts ◽  
William A. Matthews ◽  
Rebecca G. Englert ◽  
Morgan D. Brooks ◽  
Marie-Pier Boivin ◽  
...  

Abstract The along-strike variability in sediment provenance within the Nanaimo basin is important for understanding the tectonic evolution of North America’s Late Cretaceous Pacific margin, providing context for paleogeographic reconstructions. Here, we provide 35 point-counted sandstone samples and 22 new detrital zircon samples from the Nanaimo basin. These new detrital zircon samples compose a portion of a basin-wide data set (N = 49, n = 10,942) that is leveraged to discern spatio-temporal changes in sediment provenance. Provenance data demonstrates that the majority of Nanaimo basin strata were sourced from regions within and east of the Coast Mountains Batholith, while only the southernmost Nanaimo basin, exposed in the San Juan Islands, was supplied sediment from the North Cascade thrust system. Additionally, near-identical age modes and synchronous changes in detrital zircon facies are used to hypothesize a correlation between the Nanaimo Group and the protolith of the Swakane Gneiss. These observations, along with previously identified events in the Cordillera, are used to define two basin-wide events that affected the Nanaimo basin: the first at 84 Ma and the second at 72 Ma. The first event is correlated to the onset of Kula-Farallon spreading, which affected basin subsidence, introduced Proterozoic detrital zircon to the central and southern Nanaimo basin, and uplifted the North Cascade thrust system. The second basin-wide event, which is speculated to have been driven by increased rates of subduction and obliquity, resulted in localized high-flux events in the arc, increased exhumation of the Cascade Crystalline Core, underplating of the Swakane Gneiss, and coarse-grained sedimentation across the basin. The data presented here provides added context for the evolution of the basin and provides insight into the protracted geodynamics of forearc basins undergoing oblique subduction.


Sign in / Sign up

Export Citation Format

Share Document