convergent margins
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 39)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Author(s):  
José Alberto Padrón-navarta ◽  
Vicente López Sánchez-Vizcaíno ◽  
Manuel Menzel ◽  
María Teresa Gómez-Pugnaire ◽  
Carlos Garrido

Abstract The Earth's mantle is oxygen-breathing through the ¬sink of oxidised tectonic plates at convergent margins. Ocean floor serpentinisation increases the bulk oxidation state of iron relative to dry oceanic mantle and results in a variable intake of other redox-sensitive elements such as sulphur. The reversibility of seafloor oxidation in subduction zones during high-pressure dehydration of serpentinite (“deserpentinisation”) at subarc depths and the capacity of the resulting fluids to oxidise the mantle source of arc basalts are highly contested. Thermodynamic modelling, experiments, and metaperidotite study in exhumed high-pressure terrains result in differing estimates of the redox state of deserpentinisation fluids, ranging from low to highly oxidant. Here we show that although intrinsic deserpentinisation fluids are highly oxidant, the infiltration of small fractions of external fluids equilibrated with metasedimentary rocks strongly modulates their redox state and oxidation-reduction capacity explaining the observed discrepancies in their redox state. Infiltration of fluids equilibrated with graphite-bearing sediments reduces the oxidant, intrinsic deserpentinisation fluids to oxygen fugacities similar to those observed in most graphite-furnace experiments and natural metaperidotites. However, infiltration of CO2-bearing fluids equilibrated with modern GLOSS generates sulphate-rich, highly oxidising deserpentinisation fluids. We show that such GLOSS-infiltrated deserpentinisation fluids can effectively oxidise the mantle wedge of cold to hot subduction zones potentially accounting for the presumed oxidised nature of the source of arc basalts.


2021 ◽  
Author(s):  
Timothy Chapman ◽  
Luke Milan ◽  
Ian Metcalfe ◽  
Phil Blevin ◽  
James Crowley

Abstract Brief pulses of intense magmatic activity (flare-ups) along convergent margins represent drivers for climatic excursions that can lead to major extinction events. However, correlating volcanic outpouring to environmental crises in the geological past is often difficult due to poor preservation of volcanic sequences. Herein, we present a high-fidelity, CA-TIMS U–Pb zircon record of an end-Permian flare-up event in Eastern Australia, that involved the eruption of >39,000–150,000 km3 of silicic magma in c. 4.21 million years. A correlated high-resolution tephra record (c. 260–249 Ma) in the proximal sedimentary basins suggests recurrence of eruptions from the volcanic field in intervals of ~51,000–145,000 years. Peak eruption activity at 253 Ma is chronologically associated with the pulsed stages of the Permian mass extinction event. The ferocity of the 253 Ma eruption cycle in Eastern Australia is identified as a driver of greenhouse crises and ecosystem stress that led to the reduction in diversity of genera and the demise of the Glossopteris Forests. Simultaneous global continental margin arc flare-up events could thus present an additional agent to trigger greenhouse warming and ecosystem stress that preceded the catastrophic eruption of the Siberian Traps.


2021 ◽  
Vol 15 (6) ◽  
pp. 495-509
Author(s):  
I. Yu. Safonova ◽  
A. I. Khanchuk

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1011
Author(s):  
Jeffrey S. Hannon ◽  
Craig Dietsch ◽  
Warren D. Huff ◽  
Davidson Garway

Cretaceous strata preserved in Wyoming contain numerous large bentonite deposits formed from the felsic ash of volcanic eruptions, mainly derived from Idaho batholith magmatism. These bentonites preserve a near-continuous 40 m.y. chronology of volcanism and their whole-rock and mineral chemistry has been used to document igneous processes and reconstruct the history of Idaho magmatism as emplacement migrated across the Laurentian margin. Using LA-ICP-MS, we analyzed the U-Pb ages and Hf isotopic compositions of nearly 700 zircon grains from 44 bentonite beds from the Bighorn Basin, Wyoming. Zircon populations contain magmatic autocrysts and antecrysts which can be linked to the main pulses of the Idaho batholith and xenocrysts ranging from approx. 250 Ma to 1.84 Ga from country rocks and basement source terranes. Initial εHf compositions of Phanerozoic zircons are diverse, with compositions ranging from −26 to nearly +12. Based on temporal trends in zircon ages and geochemistry, four distinct periods of plutonic emplacement are recognized during the Mid- to Late Cretaceous that follow plutonic emplacement across the Laurentian suture zone in western Idaho and into western Montana with the onset of Farallon slab shallowing. Our data demonstrate the utility of using zircons in preserved tephra to track the regional-scale evolution of convergent margins related to terrane accretion and the spatial migration of magmatism related to changes in subduction dynamics.


2021 ◽  
pp. 114-136
Author(s):  
Elisabeth Ervin-Blankenheim

Plate tectonics, the grand unifying theory of geology, and its relation to the Earth is explained in this chapter. The planet transforms through time by means of the movement of rigid plates carrying the continents riding on the plastic material in the Earth’s upper mantle. Three major plate boundaries are divergent margins, where new ocean floor is being created along mid-ocean ridges and plates separate from one another; convergent margins, where the material is subducted and consumed as different types of plates collide, creating trenches, island arcs or mountain ranges, and transform boundaries; and where plates slide past one another. Besides the three predominant boundaries, hot spots caused by mantle plumes and diffuse boundaries make up additional dynamic forces in tectonics. Beyond these categories, geologists still are learning about tectonics; some boundaries are unknown or speculative. Plate tectonics explains why many of the Earth’s hazards are found where there are. Earthquakes trace many plate margins, as do volcanoes. The area around the Pacific Ocean is called the “Ring of Fire” because of the many volcanoes related to subducting plates. Tectonics accounts for why certain rocks are located where they are; for example, all rock types are found at convergent margins. The theory also predicts where valuable mineral and economic deposits are located.


2021 ◽  
Author(s):  
Massimo Chiaradia ◽  
Luca Caricchi

Abstract Porphyry copper deposits, the principal natural source of Cu and Mo, form at convergent margins. Copper is precipitated from fluids associated with cooling magmas that have formed in the mantle and evolved at variably deep crustal levels, before raising close to the surface where they exsolve fluids and copper. Despite significant advances in the understanding of their formation, there are still underexplored aspects of the genesis of porphyry copper deposits. Here, we address the role played by magma injection rates into the shallow crust on the formation of porphyry copper deposits with different copper endowments. Using a mass balance approach, we show that supergiant porphyry Cu deposits (>10 Mt Cu) require magma volumes and magma injection rates typical of large volcanic eruptions. Because such volcanic events would destroy magmatic-hydrothermal systems or prevent their formation, the largest porphyry Cu deposits can be considered as failed large eruptions and this may be one of the causes of their rarity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunfei Chen ◽  
Michael W. Förster ◽  
Stephen F. Foley ◽  
Yongsheng Liu

AbstractRemobilization of sedimentary carbonate in subduction zones modulates arc volcanism emissions and thus Earth’s climate over geological timescales. Although limestones (or chalk) are thought to be the major carbon reservoir subducted to subarc depths, their fate is still unclear. Here we present high-pressure reaction experiments between impure limestone (7.4 wt.% clay) and dunite at 1.3–2.7 GPa to constrain the melting behaviour of subducted natural limestone in contact with peridotite. The results show that although clay impurities significantly depress the solidus of limestone, melting will not occur whilst limestones are still part of the subducting slab. Buoyancy calculations suggest that most of these limestones would form solid-state diapirs intruding into the mantle wedge, resulting in limited carbon flux to the deep mantle (< ~10 Mt C y−1). Less than 20% melting within the mantle wedge indicates that most limestones remain stable and are stored in subarc lithosphere, resulting in massive carbon storage in convergent margins considering their high carbon flux (~21.4 Mt C y−1). Assimilation and outgassing of these carbonates during arc magma ascent may dominate the carbon flux in volcanic arcs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Diego Costantino ◽  
Douglas Paton ◽  
Andrés Mora

Fold-and-thrust belts and their associated structures are among the most common geological features of convergent margins. They provide significant information about crustal shortening and mountain-building processes. In subaerial belts, where the erosional rates are high and the growth strata are mostly eroded, methodologies such as that presented here can provide insights into to their formation. Two 2D cross-sections located in the Eastern Cordillera of Colombia are presented in this research. These sections extend from the Bogota Savanna to The Llanos, parallel to the regional deformation direction. Section construction was carried out using commercial surface data, and seismic information provided by Ecopetrol. Published thermochronometric data, gravel-clast petrography analysis, and paleoflora analysis were used to construct a viable tectono-evolutionary history of the study area. This evolutionary model is presented here in two palinpastic restorations from the Early Paleogene to Recent (∼65 Ma to Present-day). Section 1 and Section 10 accumulated 17.3 km and 19.5 km of shortening, respectively. The section reconstruction displays two major tectonic events – post-rift subsidence during the Early-Mid Paleogene, and positive inversion from the Oligocene to Recent (∼33 Ma to Present-day). This investigation focuses on the compressional period, where the structural analysis evidences an acceleration in the shortening rate, as well as a progressive migration of the deformation from northwest to southeast. This research discusses the extent and limitation of this methodology, as well as the principal structural aspects of the reconstruction.


Sign in / Sign up

Export Citation Format

Share Document