Enhanced Microwave Regeneration of a Polymeric Adsorbent through Carbon Nanotubes Deposition

Author(s):  
Arman Peyravi ◽  
Zaher Hashisho ◽  
David Crompton ◽  
James E. Anderson
2016 ◽  
Vol 73 (11) ◽  
pp. 2638-2643 ◽  
Author(s):  
Shahab Karimifard ◽  
Mohammad Reza Alavi Moghaddam

In this study, the microwave regeneration method was applied to investigate the properties and adsorptive performance of functionalized carbon nanotubes (f-CNTs) in different cycles of regeneration/reuse. For this purpose, an organic and hazardous dye (Reactive Blue 19) was chosen as a widely used pollutant. N2 adsorption/desorption isotherms, scanning electron microscopy and Fourier transform infrared spectroscopy were used to characterize f-CNTs during the regeneration/reuse procedure. The morphology, specific surface area and pore volume of f-CNT samples were not significantly altered. However, the functional groups present on the f-CNTs’ surface were gradually removed after successive cycles of regeneration/reuse. A sudden decrease of adsorption capacity (about 20%) after the first cycle of regeneration/reuse was attributed to the elimination of functional groups interacting with the dye molecules because of the molecular-level heating. Relatively high regeneration efficiencies (73.30 to 80.16%) proved that the microwave regeneration method was successful. Very high step stripping efficiencies (80.16 to 98.02%) in four cycles of regeneration/reuse demonstrated that the microwave regeneration method could be utilized in consecutive cycles. After four cycles of regeneration/reuse, the CNTs could not be considered as functionalized.


2020 ◽  
Vol 81 (3) ◽  
pp. 585-595 ◽  
Author(s):  
Xue Zhang ◽  
Chunyue Cui ◽  
Ying Wang ◽  
Jing Chang ◽  
Dong Ma ◽  
...  

Abstract Various magnetic carbon nanotubes (CNTs) Co0.5M0.5Fe2O4-CNTs (M = Cu, Mn, Ni, Zn) were successfully prepared and applied for treatment of pentachlorophenol (PCP) with adsorption and microwave irradiation process. The Co0.5M0.5Fe2O4-CNTs were characterized by transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry, and microwave absorption spectroscopy. The adsorption experiment results showed the adsorption capacity for PCP was in the following order: Co0.5Cu0.5Fe2O4-CNTs > Co0.5Mn0.5Fe2O4-CNTs > Co0.5Ni0.5Fe2O4-CNTs > Co0.5Zn0.5Fe2O4-CNTs. After adsorption, the Co0.5M0.5Fe2O4-CNTs was separated by magnetic field and regenerated by microwave irradiation at 850 W for 180 s. It was confirmed that after six adsorption and microwave regeneration cycles, the regeneration efficiency maintained over 90%. In particular, Co0.5Cu0.5Fe2O4-CNTs exhibited excellent adsorption capacity and reusability. These results can open a new avenue for treatment of chlorinated organic compounds with efficiently and non-secondary pollution.


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


Nature China ◽  
2007 ◽  
Author(s):  
Rachel Pei Chin Won
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document