dye molecules
Recently Published Documents


TOTAL DOCUMENTS

1348
(FIVE YEARS 243)

H-INDEX

66
(FIVE YEARS 9)

2022 ◽  
Vol 28 (2) ◽  
Author(s):  
K. Periyasamy ◽  
P. Sakthivel ◽  
G. Venkatesh ◽  
P. M. Anbarasan ◽  
P. Vennila ◽  
...  
Keyword(s):  

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaobo Han ◽  
Fang Li ◽  
Zhicong He ◽  
Yahui Liu ◽  
Huatian Hu ◽  
...  

Abstract We demonstrate a double Rabi splitting totaling 348 meV in an Ag nanocavity embedding of methylene blue (MB) dye layer, which is ascribed to the equilibrium state of monomer and dimer coexistence in MB dye. At low dye concentration, the single-mode strong coupling between the monomer exciton in MB dye and the Ag nanocavity is observed. As the dye concentration is increased, three hybridized plexciton states are observed, indicating a double Rabi splitting (178 and 170 meV). Furthermore, the double anti-crossing behavior of the three hybrid states is observed by tuning the Ag nanocube size, which validates the multi-mode strong coupling regime. It shows clear evidence on the diverse exciton forms of dye molecules, both of which can interact with plasmonic nanocavity, effectively. Therefore, it provides a good candidate for realizing the multi-mode strong coupling.


2022 ◽  
Author(s):  
Hikaru Sakamoto ◽  
Akitaka Ito ◽  
Masataka Ohtani

We demonstrate that the nanosize effect appears to affect the properties of dye molecules encapsulated in the pores of a metal–organic framework (dye@MOF). The emissive properties of the nanosized dye@MOF...


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132085
Author(s):  
Prajwal Sherugar ◽  
Mahesh Padaki ◽  
Nagaraj S. Naik ◽  
Sajan D. George ◽  
Dharmapura H.K. Murthy

The Analyst ◽  
2022 ◽  
Author(s):  
Karolin Bomhardt ◽  
Pascal Schneider ◽  
Marcus Rohnke ◽  
Christoph Gebhardt ◽  
Michael Durr

Highlighter inks were analyzed by means of soft Desorption/Ionization induced by Neutral SO2 clusters (DINeC) in combination with mass spectrometry (MS). The dye molecules of the different inks were directly...


CrystEngComm ◽  
2022 ◽  
Author(s):  
Zi-Wei Cui ◽  
Jun-Jun Lu ◽  
Hong-Yan Lin ◽  
Jian Luan ◽  
Zhi-Han Chang ◽  
...  

Four new Keggin-based complexes derived from bis(pyrazine)–bis(amide) ligands are used to detect multiple analytes (BrO3− NO2−, Cr(vi) and Fe(iii) ions) and adsorb organic dye molecules from aqueous solution.


2022 ◽  
Author(s):  
Mannu Kaur ◽  
Gabrielle A. Mandl ◽  
Steven L. Maurizio ◽  
Gabriella Tessitore ◽  
John A. Capobianco

Dye sensitization is a promising route to enhance luminescence from lanthanide-doped upconverting nanoparticles (LnUCNPs) by improving the photon harvesting capability of LnUCNPs through the use of dye molecules, characterized by...


2022 ◽  
pp. 97-140
Author(s):  
Pitchaimani Veerakumar ◽  
Arumugam Sangili ◽  
King-Chuen Lin

2021 ◽  
Vol 22 (4) ◽  
pp. 792-803
Author(s):  
Mariia Liaskovska ◽  
Tetiana Tatarchuk ◽  
Volodymyr Kotsyubynsky ◽  
Hanna Ersteniuk

The cobalt-zinc ferrites Zn1-xCoxFe2O4 (where x=0; 0.2; 0.4; 0.6; 0.8; 1.0) were obtained by green synthesis using Ginkgo Biloba extract as reductant and fuel. The cation distribution of the spinel ferrites has been investigated by means of X-ray diffraction and Mossbauer spectroscopy. The surface morphology and elemental composition were analyzed by SEM and EDS. The crystallite size decrease with increasing Co2+ content calculated from Scherrer equation and Williamson-Hall method. Adsorption properties of the spinel system were investigated using Congo Red (CR) dye as model pollutant. It is concluded that the adsorption of Congo red dye molecules can occur due to electrostatic and donor-acceptor interactions with the adsorbent surface containing various amount of active centers.


2021 ◽  
Author(s):  
Sehoon Chang ◽  
Shannon L. Eichmann ◽  
Wei Wang

Abstract Nanoparticles or nanocomposite fluids are injected into oil reservoirs for reservoir tracing or to improve injectivity or recovery of oil. Effective application of nanoparticles in fluid flooding still needs to be investigated. Dual-mode surface-enhanced Raman scattering (SERS) - surface-enhanced fluorescence (SEF) composite nanoparticles have been developed as nanoparticle reservoir tracers. This presentation discusses their transport and detectability in porous media, providing valuable information for understanding the role of nanoparticles in EOR process. The dual-mode surface-enhanced Raman scattering (SERS) - surface-enhanced fluorescence (SEF) composite nanoparticles are synthesized composed of Ag or Au metal cores, specific dye molecules, and a SiO2 shell materials. To optimize maximum signal enhancement of both phenomena such as SERS and SEF, the distance between core metal nanoparticles and dye molecules are precisely controlled. The synthesized composite nanoparticles barcoded with dye molecules are detectable by both fluorescence and Raman spectroscopies due to the SERS-SEF phenomena. Both fluorescence and Raman microscopic images of dye embedded surfaceenhanced Raman scattering (SERS) surface-enhanced fluorescence (SEF) composite nanoparticles in water phase successfully were collected within microfluidic reservoir-on-a-chip. The reservoir-on-a-chip utilized in this study fabricated based on reservoir rock geometry and coated with calcium carbonate. The synthesized SERS-SEF composite nanoparticles in water solution have been flooded into the microfluidic reservoir-on-a-chip and imaged for probing interfacial behavior of fluids such as liquid-liquid interfaces and studying the behavior of nanoparticles at liquid-rock interfaces. The precise synthesis method to produce the composite nanoparticles has been developed for the embedded dye molecules to generate noticeably enhanced detectability due to the strong SERS phenomenon. In conclusion, SERS-SEF nanoparticles barcoded with the fingerprinted Raman and fluorescence signals can provide a possible pathway toward SERS-SEF nanoprobe as various barcoded tracers to understand fluid behavior in porous media. Composite nanoparticle synthesis and its detection in flow technologies have been developed for visualization of the fluid flow behavior in porous media representing reservoir rock geometry. The results of the high-resolution nanoparticle fluid imaging data in reservoir-on-a-chip can be applied to understand mechanism of nanoparticle fluid assisted chemical enhanced oil recovery.


Sign in / Sign up

Export Citation Format

Share Document