Structural phenomena in the growth of carbon nanotubes

Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.

2021 ◽  
Vol 11 (3) ◽  
pp. 1272
Author(s):  
Bartłomiej Podsiadły ◽  
Piotr Matuszewski ◽  
Andrzej Skalski ◽  
Marcin Słoma

In this publication, we describe the process of fabrication and the analysis of the properties of nanocomposite filaments based on carbon nanotubes and acrylonitrile butadiene styrene (ABS) polymer for fused deposition modeling (FDM) additive manufacturing. Polymer granulate was mixed and extruded with a filling fraction of 0.99, 1.96, 4.76, 9.09 wt.% of CNTs (carbon nanotubes) to fabricate composite filaments with a diameter of 1.75 mm. Detailed mechanical and electrical investigations of printed test samples were performed. The results demonstrate that CNT content has a significant influence on mechanical properties and electrical conductivity of printed samples. Printed samples obtained from high CNT content composites exhibited an improvement in the tensile strength by 12.6%. Measurements of nanocomposites’ electrical properties exhibited non-linear relation between the supply voltage and measured sample resistivity. This effect can be attributed to the semiconductor nature of the CNT functional phase and the occurrence of a tunnelling effect in percolation network. Detailed I–V characteristics related to the amount of CNTs in the composite and the supply voltage influence are also presented. At a constant voltage value, the average resistivity of the printed elements is 2.5 Ωm for 4.76 wt.% CNT and 0.15 Ωm for 9.09 wt.% CNT, respectively. These results demonstrate that ABS/CNT composites are a promising functional material for FDM additive fabrication of structural elements, but also structural electronics and sensors.


2001 ◽  
Vol 87 (27) ◽  
Author(s):  
J. Gavillet ◽  
A. Loiseau ◽  
C. Journet ◽  
F. Willaime ◽  
F. Ducastelle ◽  
...  

2014 ◽  
Vol 30 (2) ◽  
pp. 112-116 ◽  
Author(s):  
Akshay Kumar ◽  
K. Singh ◽  
O.P. Pandey

2018 ◽  
Vol 50 (7) ◽  
pp. 734-743 ◽  
Author(s):  
Hassan Wahab ◽  
Mohamed M. El Gomati ◽  
Steven J. Hinder ◽  
John F. Watts

2006 ◽  
pp. 77-93 ◽  
Author(s):  
Martin S. Bell ◽  
Rodrigo G. Lacerda ◽  
Kenneth B.K. Teo ◽  
William I. Milne

2018 ◽  
Vol 5 (9) ◽  
pp. 17447-17452
Author(s):  
D.G. Batryshev ◽  
Ye. Yerlanuly ◽  
T.S. Ramazanov ◽  
M.T. Gabdullin ◽  
Kh.A. Abdullin

1999 ◽  
Vol 7 (2) ◽  
pp. 239-262 ◽  
Author(s):  
Eiji Ōsawa ◽  
Mitsuho Yoshida ◽  
Hiroshi Ueno ◽  
Shin-Ichi Sage ◽  
Emi Yoshida

2011 ◽  
Vol 183-185 ◽  
pp. 1731-1735 ◽  
Author(s):  
Xia Yuan ◽  
Xiao Juan Wu ◽  
Yu Liang An ◽  
Qing Yi Hou

The sulfur-doped Y-junction carbon nanotubes (S-YCNTs) were prepared by chemical vapor deposition of carbon disulfide using Fe as catalyst. Sulfur can be incorporated into the nanotubes with an identifiable amount, forming sulfur-doped carbon nanotubes. The growth of asymmetrical Y-branches in the nanotubes may be related to the presence of sulfur from precursor. The structure and morphology of S-YCNTs can be controlled by processing parameters. The S-YCNTs were characterized by SEM, TEM, EDX, and XPS, respectively. The growth mechanism of S-YCNTs was discussed in terms of the role of sulfur from carbon feedstock.


2019 ◽  
Vol 11 (10) ◽  
pp. 1375-1386
Author(s):  
Ruili Zhang ◽  
Yuntao Yang ◽  
Ping Yang

Three-dimensional (3D) cobalt oxide (Co3O4) flowers with different shapes were prepared by a facile hydrothermal synthesis. The morphology of Co3O4 precursors has adjusted obviously from acicular shapes to acicular-sheet-like flowers and then to sheet-like flowers by changing reaction temperature and solution concentration. After annealing, as-prepared precursors were converted into 3D flower-like Co3O4 samples and their morphology and sizes were well preserved. The effect of experimental conditions on growth of Co3O4 precursors was explored and the growth mechanism was proposed. Moreover, the electrochemical properties of various Co3O4 with different shapes were tested. The result of electrochemical investigation indicates that 3D flower-like Co3O4 assembled by sheets exhibited high capacitance and excellent cycling performance.


Sign in / Sign up

Export Citation Format

Share Document