The power optimization on tie-line for the island energy internet based on interactive distribution network

2021 ◽  
Vol 45 ◽  
pp. 101148
Author(s):  
Zi-xia Sang ◽  
Jia-qi Huang ◽  
Zhi Du ◽  
Si-xuan Zhou ◽  
Jiong Yan ◽  
...  
2021 ◽  
Vol 1914 (1) ◽  
pp. 012033
Author(s):  
Jinbo Huang ◽  
Jiangxiao Fang ◽  
Liexiang Hu ◽  
Bolong Shi ◽  
Suirong Li ◽  
...  

2016 ◽  
Vol 12 (1) ◽  
pp. 71-78
Author(s):  
Hamza Yapıcı ◽  
Nurettin Çetinkaya

In this paper the minimization of power losses in a real distribution network have been described by solving reactive power optimization problem. The optimization has been performed and tested on Konya Eregli Distribution Network in Turkey, a section of Turkish electric distribution network managed by MEDAŞ (Meram Electricity Distribution Corporation). The network contains about 9 feeders, 1323 buses (including 0.4 kV, 15.8 kV and 31.5 kV buses) and 1311 transformers. This paper prefers a new Chaotic Firefly Algorithm (CFA) and Particle Swarm Optimization (PSO) for the power loss minimization in a real distribution network. The reactive power optimization problem is concluded with minimum active power losses by the optimal value of reactive power. The formulation contains detailed constraints including voltage limits and capacitor boundary. The simulation has been carried out with real data and results have been compared with Simulated Annealing (SA), standard Genetic Algorithm (SGA) and standard Firefly Algorithm (FA). The proposed method has been found the better results than the other algorithms.


Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 328 ◽  
Author(s):  
Zifan Zhang ◽  
Zhidong Wang ◽  
Zhifeng Chen ◽  
Gan Wang ◽  
Na Shen ◽  
...  

As the largest global renewable source, hydropower is a useful supplement to mountainous distribution networks with abundant water resources, and shoulders a large portion of the regulation duty in many power systems. In particular, in the form of decentralized energy sources located to their customers, small hydropower (SHP) improve grid stability by diversifying the electricity system and reducing power loss. The mountainous distribution networks supplied by small hydropower are closed-loop design but open-loop operation, which easily causes the tripping of tie line even further the off-grid operation of small hydropower system. Once the tie line trips, the current countermeasures—such as hydropower shutdown and load shedding—do not fully guarantee the reliability of power supply and the utilization efficiency of hydropower. This paper studies the amplitude-frequency characteristics of SHP off-grid, according to the typical integration of hydropower in South China, a SHP on-grid/off-grid model is established based on the Power Systems Computer Aided Design (PSCAD) platform. It is found that due to the inertia of SHP, the amplitude-frequency characteristics of SHP island system are relatively slow, and the process of non-synchronization with the main grid is gradually expanded. The characteristic of SHP has a certain degree of synchronization with the main grid in the initial island operates stage, which helps to find a novel grid connection method. This paper further proposes the strategy of using fast busbar automatic transfer switch (BATS), which quickly connect the trip-off SHP to the distribution network under the condition of permitting distributed energy grid-connected. The PSCAD simulation results show that proposed strategy has a limited impact on the power grid and prove the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document