tie line
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 161)

H-INDEX

25
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 361
Author(s):  
Ahmed Fathy ◽  
Dalia Yousri ◽  
Hegazy Rezk ◽  
Sudhakar Babu Thanikanti ◽  
Hany M. Hasanien

In this article, a recent modified meta-heuristic optimizer named the modified hunger games search optimizer (MHGS) is developed to determine the optimal parameters of a fractional-order proportional integral derivative (FOPID) based load frequency controller (LFC). As an interconnected system’s operation requires maintaining the tie-line power and frequency at their described values without permitting deviations in them, an enhanced optimizer is developed to identify the controllers’ parameters efficiently and rapidly. Therefore, the non-uniform mutation operator is proposed to strengthen the diversity of the solutions and discover the search landscape of the basic hunger games search optimizer (HGS), aiming to provide a reliable approach. The considered fitness function is the integral time absolute error (ITAE) comprising the deviations in tie-line power and frequencies. The analysis is implemented in two networks: the 1st network comprises a photovoltaic (PV) plant connected to the thermal plant, and the 2nd network has four connected plants, which are PV, wind turbine (WT), and 2 thermal units with generation rate constraints and governor dead-band. Two different load disturbances are imposed for two studied systems: static and dynamic. The results of the proposed approach of MHGS are compared with the marine predators algorithm (MPA), artificial ecosystem based optimization (AEO), equilibrium optimizer (EO), and Runge–Kutta based optimizer (RUN), as well as movable damped wave algorithm (DMV) results. Moreover, the performance specifications of the time responses of frequencies and tie-line powers’ violations comprising rise time, settling time, minimum/maximum setting values, overshoot, undershoot, and the peak level besides its duration are calculated. The proposed MHGS shows its reliability in providing the most efficient values for the FOPID controllers’ parameters that achieve the lowest fitness of 0.89726 in a rapid decaying. Moreover, the MHGS based system becomes stable the most quickly as it has the shortest settling time and is well constructed as it has the smallest peak, overshoots at early times, and then the system becomes steady. The results confirmed the competence of the proposed MHGS in designing efficient FOPID-LFC controllers that guarantee reliable operation in case of load disturbances.


2021 ◽  
Author(s):  
Qiong Zhang ◽  
Changchang Sun ◽  
Fei Yan ◽  
Chao Lv ◽  
Yunqing Liu

Abstract. Airborne geophysical data leveling is an indispensable step to the conventional data processing. Traditional data leveling methods mainly explore the leveling error properties in the time and frequency domain. A new technique is proposed to level airborne geophysical data in view of the image space properties of leveling error, including directional distribution property and amplitude variety property. This work applied unidirectional variational model on entire survey data based on the gradient difference between the leveling errors in flight line direction and the tie-line direction. Then spatially adaptive multi-scale model is introduced to iteratively decompose the leveling errors which effectively avoid the difficulty on the parameter selection. Considering the anomaly data with large amplitude may hide the real data level, a leveling preprocessing method is given to construct a smooth field based on the gradient data. The leveling method can automatically extract the leveling errors of the entire survey area simultaneously without the participation of staff members or tie-line control. We have applied the method to the airborne electromagnetic, magnetic data, and apparent conductivity data collected by Ontario Geological Survey to confirm its validity and robustness by comparing the results with the published data.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012025
Author(s):  
Zhiyong Yang ◽  
Bingyuan Yang

Abstract MMC-HVDC has the characteristics of limited amplitude, controlled phase angle and unequal positive and negative sequence impedance. Therefore, the fault characteristics of flexible direct system and AC power grid tie line are quite different from traditional synchronous power supply, which may affect the performance of AC power grid sudden variable protection. Therefore, a new AC protection method based on positive sequence current sudden variable impedance is proposed. The results show that when an in zone fault occurs, the direction of current sudden changes at both ends is the same, and the positive sequence impedance may approach the line impedance; When an out of area fault occurs, the current abrupt variables at both ends have opposite directions and equal sizes, and the positive sequence impedance is much greater than the line impedance. Based on the above characteristics, the criteria of fault start up and fault type are constructed. The simulation results show that the protection method can realize fault discrimination quickly and reliably.


2021 ◽  
Author(s):  
Martin Cornejo ◽  
Anurag Mohapatra ◽  
Soner Candas ◽  
Vedran S. Peric

This paper demonstrates a Power Hardware-in-the-Loop (PHIL) implementation of a decentralized optimal power flow (D-OPF) algorithm embedded into the operations of two microgrids connected by a tie line. To integrate the static behavior of the optimization model, a two layer control architecture is introduced. Underneath the dispatch commands from the D-OPF, a primary control scheme provides instantaneous reaction to the load dynamics. This setup is tested in the PHIL environment of the CoSES Lab in TU Munich. In the experiment, the two microgrids cooperatively optimize their operation through an ADMM based unbalanced D-OPF. The operations is then benchmarked against the exclusive use of primary control, without D-OPF. The decentralized approach outperforms, but also shows minor inefficiencies of integrating optimization methods into the real-time operation of the system.<br>


2021 ◽  
Author(s):  
Martin Cornejo ◽  
Anurag Mohapatra ◽  
Soner Candas ◽  
Vedran S. Peric

This paper demonstrates a Power Hardware-in-the-Loop (PHIL) implementation of a decentralized optimal power flow (D-OPF) algorithm embedded into the operations of two microgrids connected by a tie line. To integrate the static behavior of the optimization model, a two layer control architecture is introduced. Underneath the dispatch commands from the D-OPF, a primary control scheme provides instantaneous reaction to the load dynamics. This setup is tested in the PHIL environment of the CoSES Lab in TU Munich. In the experiment, the two microgrids cooperatively optimize their operation through an ADMM based unbalanced D-OPF. The operations is then benchmarked against the exclusive use of primary control, without D-OPF. The decentralized approach outperforms, but also shows minor inefficiencies of integrating optimization methods into the real-time operation of the system.<br>


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3029
Author(s):  
Xudong Wang ◽  
Xueyang Shen ◽  
Suyang Sun ◽  
Wei Zhang

Chalcogenide phase-change materials (PCMs) based random access memory (PCRAM) enter the global memory market as storage-class memory (SCM), holding great promise for future neuro-inspired computing and non-volatile photonic applications. The thermal stability of the amorphous phase of PCMs is a demanding property requiring further improvement. In this work, we focus on indium, an alloying ingredient extensively exploited in PCMs. Starting from the prototype GeTe alloy, we incorporated indium to form three typical compositions along the InTe-GeTe tie line: InGe3Te4, InGeTe2 and In3GeTe4. The evolution of structural details, and the optical properties of the three In-Ge-Te alloys in amorphous and crystalline form, was thoroughly analyzed via ab initio calculations. This study proposes a chemical composition possessing both improved thermal stability and sizable optical contrast for PCM-based non-volatile photonic applications.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012104
Author(s):  
Hua Jiang ◽  
Xinglai Shen ◽  
Bing Ma

Abstract Based on the analysis model of unipolar grounding fault occurred in two-terminal MMC DC distribution network, the characteristics of unipolar grounding fault are studied. The similarity characteristics of transient currents between the fault line and the non-fault line are analyzed when the fault is located in the feeder, tie line and bus respectively. According to the characteristics of single-pole grounding fault and the similarity principle, a new single-pole grounding protection method for DC distribution network based on two-terminal MMC is proposed. The simulation results show that the proposed single-pole grounding protection method can accurately determine the single-pole grounding fault at any position of the DC distribution network. The research results can effectively solve the problem of single-pole grounding protection in DC distribution network, and effectively improve the security and reliability of DC distribution network.


Sign in / Sign up

Export Citation Format

Share Document