Silicon as high-temperature phase change medium for latent heat storage: A thermo-hydraulic study

2021 ◽  
Vol 46 ◽  
pp. 101249
Author(s):  
Alok K. Ray ◽  
Dibakar Rakshit ◽  
K. Ravi Kumar ◽  
Hal Gurgenci
2003 ◽  
Vol 33 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Yu-Ming Xing ◽  
Xin Xu ◽  
Xiu-gan Yuan ◽  
Hai-Ting Cui ◽  
Yun-hao Zhang

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6886
Author(s):  
Alok Kumar Ray ◽  
Dibakar Rakshit ◽  
K. Ravi Kumar ◽  
Hal Gurgenci

High-temperature latent heat storage (LHS) systems using a high-temperature phase change medium (PCM) could be a potential solution for providing dispatchable energy from concentrated solar power (CSP) systems and for storing surplus energy from photovoltaic and wind power. In addition, ultra-high-temperature (>900 oC) latent heat storage (LHS) can provide significant energy storage density and can convert thermal energy to both heat and electric power efficiently. In this context, a 2D heat transfer analysis is performed to capture the thermo-fluidic behavior during melting and solidification of ultra-high-temperature silicon in rectangular domains for different aspect ratios (AR) and heat flux. Fixed domain effective heat capacity formulation has been deployed to numerically model the phase change process using the finite element method (FEM)-based COMSOL Multiphysics. The influence of orientation of geometry and heat flux magnitude on charging and discharge performance has been evaluated. The charging efficiency of the silicon domain is found to decrease with the increase in heat flux. The charging performance of the silicon domain is compared with high-temperature LHS domain containing state of the art salt-based PCM (NaNO3) for aspect ratio (AR) = 1. The charging rate of the NaNO3 domain is observed to be significantly higher compared to the silicon domain of AR = 1, despite having lower thermal diffusivity. However, energy storage density (J/kg) and energy storage rate (J/kgs) for the silicon domain are 1.83 and 2 times more than they are for the NaNO3 domain, respectively, after 3.5 h. An unconventional counterclockwise circular flow is observed in molten silicon, whereas a clockwise circular flow is observed in molten NaNO3 during charging. The present study establishes silicon as a potential PCM for designing an ultra-high-temperature LHS system.


Author(s):  
J. Martínez-Gómez ◽  
E. Urresta ◽  
D. Gaona ◽  
G. Guerrón

Esta investigación tiene como objetivo seleccionar un material de cambio de fase (PCM) que cumplen mejor la solución del almacenamiento de energía térmica entre 200-400 ° C y reducir el costo de producción. El uso de métodos multicriterios de toma de decisiones (MCMD) para la evaluación fueron proporcionales implementados como COPRAS-G, TOPSIS y VIKOR. La ponderación de los criterios se realizó por el método AHP (proceso analítico jerárquico) y los métodos de entropía. La correlación de los resultados entre los tres métodos de clasificación ha sido desarrollada por el coeficiente de correlación de Spearman. Los resultados ilustran el mejor y la segundo mejor opción para los tres MCDM fueron NaOH y KNO3. Además, tenía valores de correlación de Spearman entre los métodos excede de 0.714.


2021 ◽  
Vol 150 ◽  
pp. 111528
Author(s):  
Ming Liu ◽  
Ehsan Shamil Omaraa ◽  
Jia Qi ◽  
Pegah Haseli ◽  
Jumal Ibrahim ◽  
...  

2010 ◽  
Vol 50 (9) ◽  
pp. 1229-1239 ◽  
Author(s):  
Takahiro Nomura ◽  
Noriyuki Okinaka ◽  
Tomohiro Akiyama

Sign in / Sign up

Export Citation Format

Share Document