A coordinated management scheme for power quality and load consumption improvement in smart grids based on sustainable energy exchange based model

2022 ◽  
Vol 51 ◽  
pp. 101903
Author(s):  
Navid Rezaei ◽  
Hadi Tarimoradi ◽  
Mohammadhossein Deihimi
Author(s):  
Patricio G. Donato ◽  
Alvaro Hernandez ◽  
Marcos A. Funes ◽  
Ignacio Carugati ◽  
Ruben Nieto ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 4317
Author(s):  
K. Prakash ◽  
F. R. Islam ◽  
K. A. Mamun ◽  
H. R. Pota

A distribution network is one of the main parts of a power system that distributes power to customers. While there are various types of power distribution networks, a recently introduced novel structure of an aromatic network could begin a new era in the distribution levels of power systems and designs of microgrids or smart grids. In order to minimize blackout periods during natural disasters and provide sustainable energy, improve energy efficiency and maintain stability of a distribution network, it is essential to configure/reconfigure the network topology based on its geographical location and power demand, and also important to realize its self-healing function. In this paper, a strategy for reconfiguring aromatic networks based on structures of natural aromatic molecules is explained. Various network structures are designed, and simulations have been conducted to justify the performance of each configuration. It is found that an aromatic network does not need to be fixed in a specific configuration (i.e., a DDT structure), which provides flexibility in designing networks and demonstrates that the successful use of such structures will be a perfect solution for both distribution networks and microgrid systems in providing sustainable energy to the end users.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 132803-132805
Author(s):  
Firuz Zare ◽  
Frede Blaabjerg ◽  
Pooya Davari ◽  
Gary W. Chang ◽  
Jafar Adabi

Energetika ◽  
2018 ◽  
Vol 63 (4) ◽  
Author(s):  
Serhii Yu. Shevchenko ◽  
Vitalii V. Volokhin ◽  
Illia M. Diahovchenko

Problems of power quality and electric energy accounting often occur in networks with large pervasion of photovoltaic (PV) elements on rooftops of household and office buildings. In smart grids, including PV arrays electricity, which is sold back to the distribution network, requires approval of its parameters and quality control. Distributed power inverters generate higher harmonics which affect relay protection, automation systems, smart meters and power system’s reliability. In this article the influence of photovoltaic elements on the accuracy of electric energy metering and power quality questions are analysed.


Sign in / Sign up

Export Citation Format

Share Document