scholarly journals Power quality issues in smart grids with photovoltaic power stations

Energetika ◽  
2018 ◽  
Vol 63 (4) ◽  
Author(s):  
Serhii Yu. Shevchenko ◽  
Vitalii V. Volokhin ◽  
Illia M. Diahovchenko

Problems of power quality and electric energy accounting often occur in networks with large pervasion of photovoltaic (PV) elements on rooftops of household and office buildings. In smart grids, including PV arrays electricity, which is sold back to the distribution network, requires approval of its parameters and quality control. Distributed power inverters generate higher harmonics which affect relay protection, automation systems, smart meters and power system’s reliability. In this article the influence of photovoltaic elements on the accuracy of electric energy metering and power quality questions are analysed.

2020 ◽  
Vol 216 ◽  
pp. 01096
Author(s):  
Allaev Kakhraman ◽  
Musinova Gulasal

This article discusses the issues of ensuring the power quality. An analysis of the higher harmonics arising from the operation of photovoltaic power stations is made. The results of experimental research are presented. Based on the measurement and calculation data, time diagrams of changes in the parameters of the electrical system mode for the studied periods of time were constructed.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6171
Author(s):  
Mayurkumar Rajkumar Balwani ◽  
Karthik Thirumala ◽  
Vivek Mohan ◽  
Siqi Bu ◽  
Mini Shaji Thomas

Regarding the modern power smart grid, distribution consumers and prosumers are highly concerned about power quality (PQ). In fact, they would prefer to pay higher prices for a reliable and good quality power supply. Unfortunately, utility operators still aim for reliability alone, ignoring the quality of supply voltage and current. There are no clear guidelines for monitoring, penalizing, or implementing PQ-based tariff schemes in LV distribution systems. In addition, the implementation of a PQ-based tariff requires a real-time measuring mechanism at the user end, which is very expensive and difficult to understand for a domestic consumer. This paper presents a novel, low-cost, efficient, and user-friendly smart PQ meter to overcome these issues and limitations. It is essentially a PQ analyzer with energy metering functionality, which implements a novel PQ-based tariff scheme that penalizes consumers violating the PQ limits and provides incentives for a good PQ profile. It measures as many as 28 parameters and keeps track of the PQ for both the consumer and the grid in real-time. This paper demonstrates the specifications, design, and testing of the meter and proves the validity of the concept by practical implementation. The meter is practical, feasible, and economical for implementing PQ-based tariff schemes in LV distribution systems or smart grids.


2021 ◽  
Vol 14 (1) ◽  
pp. 299
Author(s):  
Anton Petrochenkov ◽  
Aleksandr Romodin ◽  
Dmitriy Leyzgold ◽  
Andrei Kokorev ◽  
Aleksandr Kokorev ◽  
...  

The problem of the quality of electric energy in the utilization of petroleum gas is considered. The article presents the results of the development of a mathematical description of power supply systems with gas turbine power stations based on two-shaft gas turbine units. The typical power distribution scheme of a gas turbine power station is given. The joint analysis of the generation modes of the gas turbine power station and the detected deviations of the power quality indicators values was carried out. The influence of the used mode on the power quality indicators is determined. As a result, the factors of operation of a gas turbine power station that affects power quality are identified, and recommendations for their elimination are given.


Author(s):  
Patricio G. Donato ◽  
Alvaro Hernandez ◽  
Marcos A. Funes ◽  
Ignacio Carugati ◽  
Ruben Nieto ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 487 ◽  
Author(s):  
Mahmoud Elsisi ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

The modern control infrastructure that manages and monitors the communication between the smart machines represents the most effective way to increase the efficiency of the industrial environment, such as smart grids. The cyber-physical systems utilize the embedded software and internet to connect and control the smart machines that are addressed by the internet of things (IoT). These cyber-physical systems are the basis of the fourth industrial revolution which is indexed by industry 4.0. In particular, industry 4.0 relies heavily on the IoT and smart sensors such as smart energy meters. The reliability and security represent the main challenges that face the industry 4.0 implementation. This paper introduces a new infrastructure based on machine learning to analyze and monitor the output data of the smart meters to investigate if this data is real data or fake. The fake data are due to the hacking and the inefficient meters. The industrial environment affects the efficiency of the meters by temperature, humidity, and noise signals. Furthermore, the proposed infrastructure validates the amount of data loss via communication channels and the internet connection. The decision tree is utilized as an effective machine learning algorithm to carry out both regression and classification for the meters’ data. The data monitoring is carried based on the industrial digital twins’ platform. The proposed infrastructure results provide a reliable and effective industrial decision that enhances the investments in industry 4.0.


2014 ◽  
Vol 687-691 ◽  
pp. 3110-3115
Author(s):  
Gu Li ◽  
Zi Ming Fu ◽  
Jie Feng Yan ◽  
Bing Wen Li ◽  
Zhi Rong Cen

This paper analyzes and studies the definition of the voltage transformer secondary load, examines the practical purposes of the measured values of the voltage transformer secondary load, and presents a variety of testing methods to analyze and compare the differences. This paper gives the test methods of the voltage transformer secondary load when the connection of the voltage transformer is the Y / Y in a three-phase three-wire power supply system, filling the blank of this type of test method in the industry. When other units within the industry carry out such work, the conclusions of this paper are available for reference, and the conclusions of this paper can be referred when drafting relevant regulations in the future.


2012 ◽  
Vol 19 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Jarosław Zygarlicki ◽  
Janusz Mroczka

Variable-Frequency Prony Method in the Analysis of Electrical Power QualityThe article presents a new modification of the the least squares Prony method. The so-called variable-frequency Prony method can be a useful tool for estimating parameters of sinusoidal components, which, in the analyzed signal, are characterized by time-dependent frequencies. The authors propose use of the presented method for testing the quality of electric energy. It allows observation of phenomena which, when using traditional methods, are averaged in the analysis window. The proposed modification of least squares Prony method is based on introduction and specific selection of a frequency matrix. This matrix represents frequencies of estimated components and their variability in time.


2021 ◽  
Vol 11 (2) ◽  
pp. 727 ◽  
Author(s):  
Myeong-Hwan Hwang ◽  
Young-Gon Kim ◽  
Hae-Sol Lee ◽  
Young-Dae Kim ◽  
Hyun-Rok Cha

In recent years, photovoltaic (PV) power generation has attracted considerable attention as a new eco-friendly and renewable energy generation technology. With the recent development of semiconductor manufacturing technologies, PV power generation is gradually increasing. In this paper, we analyze the types of defects that form in PV power generation panels and propose a method for enhancing the productivity and efficiency of PV power stations by determining the defects of aging PV modules based on their temperature, power output, and panel images. The method proposed in the paper allows the replacement of individual panels that are experiencing a malfunction, thereby reducing the output loss of solar power generation plants. The aim is to develop a method that enables users to immediately check the type of failures among the six failure types that frequently occur in aging PV panels—namely, hotspot, panel breakage, connector breakage, busbar breakage, panel cell overheating, and diode failure—based on thermal images by using the failure detection system. By comparing the data acquired in the study with the thermal images of a PV power station, efficiency is increased by detecting solar module faults in deteriorated photovoltaic power plants.


Sign in / Sign up

Export Citation Format

Share Document