An optical-chemical sensor using pyrene-sulfonic acid for unsteady surface pressure measurements

2021 ◽  
Vol 317 ◽  
pp. 112359
Author(s):  
Steven Claucherty ◽  
Hirotaka Sakaue
Author(s):  
Annick D’Auteuil ◽  
Guy L. Larose

The commonly-held assumption that the aerodynamics of rectangular prisms with sharp edges are insensitive to Reynolds number is shown to have limitations. Flow reattachment on the top and/or bottom of the prisms can be related to Reynolds number, Re. Steady and unsteady surface pressure measurements were carried out on nine different rectangular prisms for Re from 0.3×106 to 2.5×106 at several angles of attack, in smooth and turbulent flow. It was observed that the reattachment was dependent on parameters such as fineness ratio, edge treatment, angle of attack, turbulence of the oncoming flow and Reynolds number. Permanent reattachment occurred for prisms with fineness ratio of 4 and fluctuating reattachment took place for rectangular prisms with fineness ratio as low as 2.


2022 ◽  
Author(s):  
Laura Botero ◽  
Eki Liptiay ◽  
Cornelis H. Venner ◽  
Leandro D. de Santana

Author(s):  
C. W. Haldeman ◽  
M. L. Krumanaker ◽  
M. G. Dunn

This paper describes pressure measurements obtained for a modern one and one-half stage turbine. As part of the experimental effort, the position of the HPT vane was clocked relative to the downstream LPT vane to determine the influence of vane clocking on both the steady and unsteady pressure loadings on the LPT vane and the HPT blade. In addition, the axial location of the HPT vane relative to the HPT blade was changed to investigate the combined influence of vane/blade spacing and clocking on the unsteady pressure loading. Time-averaged and time-accurate surface-pressure results are presented for several spanwise locations on the vanes and blade. Results were obtained at four different HPT vane-clocking positions and at two different vane/blade axial spacings for three (of the four) clocking positions. For time-averaged results, the effect of clocking is small on the HPT blade and vane. The influence of clocking on the transition ducts and the LPT vane is slightly greater (on the order of ±1%). Reduced HPT vane/blade spacing has a larger effect than clocking on the HPT vanes and blades (±3%) depending upon the particular surface. Examining the data at blade passing and the first fundamental frequency, the effect of spacing does not produce a dramatic influence on the relative changes that occur between clocking positions. The results demonstrate that clocking and spacing effects on the surface pressure loading are very complex and may introduce problems if the results of measurements or analysis made at one span or location in the machine are extrapolated to other sections.


2015 ◽  
Author(s):  
Lennert Sterken ◽  
Simone Sebben ◽  
Lennart Lofdahl ◽  
Tim Walker ◽  
Thies Wölken

Sign in / Sign up

Export Citation Format

Share Document