flow reattachment
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 0)

AIAA Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Han Tu ◽  
Mathew Marzanek ◽  
Melissa A. Green ◽  
David E. Rival

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mohammed Karbon ◽  
Ahmad K. Sleiti

Turbulent flow in Z-shape duct configuration is investigated using Reynolds stress model (RSM) and ζ-f model and compared to experimental results. Both RSM and ζ-f models are based on steady-state RANS solutions. The focus was on regions where the RSM has over- or underpredicted the flow when compared to the experimental results and on regions where there are flow separations and high turbulence. The performance of predicting the flow reattachment length in each model is studied as well. RSM has shown the mean flow velocity profile results match reasonably well with the experiment. Advanced ζ-f turbulence model is introduced as user-defined function (UDF) code and applied to the Z-shape duct. It is found that the turbulent kinetic energy production in ζ equation is much easier to reproduce accurately. Both mean velocity gradient and local turbulent stress terms are also much easier to be resolved properly. The current research has found that not only ζ-f model takes less time to complete the simulation but also the mean flow velocity profile results are in better agreement with the experimental data than the RSM although both are coupled steady-state RANS. ζ-f model numerically resolved both the flow separation and reattachment regions better than the RSM. The current numerical results from ζ-f model are attractive and encouraging for wall-bounded flow applications where flow separation and flow reattachment are important for the flow mechanism.


AIAA Journal ◽  
2019 ◽  
Vol 57 (7) ◽  
pp. 2795-2807
Author(s):  
Thomas T. Rice ◽  
Michael Amitay

Author(s):  
Minho Bang ◽  
Seok Min Choi ◽  
Ho-Seong Sohn ◽  
Jun Su Park ◽  
Hyung Hee Cho

An experimental study has been conducted to investigate the heat-transfer characteristics of blade tips and shrouds with and without unsteady wakes. Depending on the presence of unsteady wakes, the local heat/mass-transfer coefficients of the tip and shroud were measured using the naphthalene sublimation method. Wakes from unsteady blades were modeled as wakes generated from moving cylindrical rod bundles. Test conditions were set to the Reynolds number of 100,000, based on an inlet velocity of 11.4 m/s and the axial chord length. The Strouhal number was varied from 0 to 0.22. For St = 0, high heat/mass-transfer coefficients appeared in regions where various flow patterns, such as flow reattachment, swirling flow, and vortexes, occurred. For St = 0.22, the heat/mass-transfer distributions of the tip and shroud were changed due to the unsteady wakes. Unsteady wakes made high turbulence intensity of leakage flow and flow patterns such as flow reattachment, swirling flow, and tip leakage vortex in the tip and shroud were changed and dispersed. There were also variations in the pitch-wise averaged Sherwood number of the blade tip and shroud on the presence of the unsteady wakes due to vortex shedding and dispersed flow patterns. Thus, considering the effects of unsteady wakes on the heat transfer of the blade tip and shroud, proper cooling designs for blade tips and shrouds should be investigated and adopted for effective cooling of gas turbine blades.


2017 ◽  
Vol 2017.92 (0) ◽  
pp. P023
Author(s):  
Shinya UEDA ◽  
Yosuke TOMOI ◽  
Kyoji INAOKA ◽  
Mamoru SENDA

2016 ◽  
Vol 803 ◽  
pp. 119-143 ◽  
Author(s):  
Andrew P. S. Wheeler ◽  
Richard D. Sandberg

Direct numerical simulations (DNS) are used to investigate the unsteady flow over a model turbine blade tip at engine-scale Reynolds and Mach numbers. The DNS are performed with an in-house multiblock structured compressible Navier–Stokes solver. The particular case of a transonic tip flow is studied since previous work has suggested that compressibility has an important effect on the turbulent nature of the separation bubble at the inlet to the tip–casing gap and subsequent flow reattachment. The flow is simulated over an idealized tip geometry where the tip gap is represented by a constant-area channel with a sharp inlet corner to represent the pressure side edge of the turbine blade. The effects of free-stream disturbances, cross-flow and the pressure side boundary layer on the tip flow aerodynamics and heat transfer are studied. For ‘clean’ inflow cases we find that even at engine-scale Reynolds numbers the tip flow is intermittent in nature, i.e. neither laminar nor fully turbulent. The breakdown to turbulence occurs through the development of spanwise streaks with wavelengths of approximately 15 %–20 % of the gap height. Multidimensional linear stability analysis confirms the two-dimensional base state to be most unstable with respect to spanwise wavelengths of 25 % of the gap height. The linear stability analysis also shows that the addition of cross-flows with 25 % of the streamwise gap exit velocity increases the stability of the tip flow. This is confirmed by the DNS, which also show that the turbulence production is significantly reduced in the separation bubble. For the case when free-stream disturbances are added to the inlet flow, viscous dissipation and the rapid acceleration of the flow at the inlet to the tip–casing gap cause significant distortion of the vorticity field and reductions of turbulence intensity as the flow enters the tip gap. The DNS results also suggest that the assumption of the Reynolds analogy and a constant recovery factor are not accurate, in particular in regions where the skin friction approaches zero while significant temperature gradients remain, such as in the vicinity of flow reattachment.


Sign in / Sign up

Export Citation Format

Share Document