Influence of Clocking and Vane/Blade Spacing on the Unsteady Surface Pressure Loading for a Modern Stage and One-Half Transonic Turbine

Author(s):  
C. W. Haldeman ◽  
M. L. Krumanaker ◽  
M. G. Dunn

This paper describes pressure measurements obtained for a modern one and one-half stage turbine. As part of the experimental effort, the position of the HPT vane was clocked relative to the downstream LPT vane to determine the influence of vane clocking on both the steady and unsteady pressure loadings on the LPT vane and the HPT blade. In addition, the axial location of the HPT vane relative to the HPT blade was changed to investigate the combined influence of vane/blade spacing and clocking on the unsteady pressure loading. Time-averaged and time-accurate surface-pressure results are presented for several spanwise locations on the vanes and blade. Results were obtained at four different HPT vane-clocking positions and at two different vane/blade axial spacings for three (of the four) clocking positions. For time-averaged results, the effect of clocking is small on the HPT blade and vane. The influence of clocking on the transition ducts and the LPT vane is slightly greater (on the order of ±1%). Reduced HPT vane/blade spacing has a larger effect than clocking on the HPT vanes and blades (±3%) depending upon the particular surface. Examining the data at blade passing and the first fundamental frequency, the effect of spacing does not produce a dramatic influence on the relative changes that occur between clocking positions. The results demonstrate that clocking and spacing effects on the surface pressure loading are very complex and may introduce problems if the results of measurements or analysis made at one span or location in the machine are extrapolated to other sections.

2003 ◽  
Vol 125 (4) ◽  
pp. 743-753 ◽  
Author(s):  
C. W. Haldeman ◽  
M. L. Krumanaker ◽  
M. G. Dunn

This paper describes pressure measurements obtained for a modern one and one-half stage turbine. As part of the experimental effort, the position of the high-pressure turbine (HPT) vane was clocked relative to the downstream low-pressure turbine (LPT) vane to determine the influence of vane clocking on both the steady and unsteady pressure loadings on the LPT vane and the HPT blade. In addition, the axial location of the HPT vane relative to the HPT blade was changed to investigate the combined influence of vane/blade spacing and clocking on the unsteady pressure loading. Time-averaged and time-accurate surface-pressure results are presented for several spanwise locations on the vanes and blade. Results were obtained at four different HPT vane-clocking positions and at two different vane/blade axial spacings for three (of the four) clocking positions. For time-averaged results, the effect of clocking is small on the HPT blade and vane. The influence of clocking on the transition ducts and the LPT vane is slightly greater (on the order of ±1%). Reduced HPT vane/blade spacing has a larger effect than clocking on the HPT vanes and blades ±3% depending upon the particular surface. Examining the data at blade passing and the first fundamental frequency, the effect of spacing does not produce a dramatic influence on the relative changes that occur between clocking positions. The results demonstrate that clocking and spacing effects on the surface pressure loading are very complex and may introduce problems if the results of measurements or analysis made at one span or location in the machine are extrapolated to other sections.


Author(s):  
Eric A. Crosh ◽  
Charles W. Haldeman ◽  
Michael G. Dunn ◽  
D. Graham Holmes ◽  
Brian E. Mitchell

As part of a proactive effort to investigate the ability of computational fluid dynamic (CFD) tools to predict time-accurate surface-pressure histories, a combined experimental/computational investigation was performed examining the effect of rotor shroud (casing) out-of-roundness on the unsteady pressure loading for the blade row of a full-stage turbine. The casing out-of-roundness was idealized by designing a casing ring with a sinusoidal variation. This casing ring was used to replace a flat casing for an existing turbine and direct comparisons were made between the time-accurate pressure measurements and predictions obtained using the flat and “wavy” casings. For both casing configurations, predictions of the unsteady pressure loading for many locations on the blade and vane were obtained using Numeca’s FINE/Turbo code and the General Electric TACOMA code. This paper will concentrate on the results obtained for the “wavy” casing, but the results for the flat casing are presented as a baseline case. The time-accurate surface-pressure measurements were acquired for the vane and blade of a modern, 3-D, stage and 1/2 high-pressure turbine operating at the design corrected speed and stage pressure ratio. The research program utilized an un-cooled turbine stage for which all three airfoil rows are heavily instrumented at multiple spans to develop a full dataset. The vane-blade-vane count for this machine is 38-72-38. The number of waves in the distorted shroud “wavy wall” is approximately 1.5-times the number of vanes. The resulting changes in aerodynamic surface-pressure measurements were measurable at all blade span wise locations. Variations in time-average surface pressure of up to 5% of the flat casing values were observed. In addition, the frequency content of the time-resolved blade data for the “wavy” casing changed substantially from that measured using the flat casing, with changes in both amplitudes and frequencies. Imposing the casing irregularity changed the fundamental physics of the problem from a single frequency and its harmonics to a multi-frequency problem with mixed harmonics. The unsteady effects of this type of problem can be addressed using the harmonic method within Numeca’s FINE/Turbo code, which is designed to handle multiple blade passing frequencies and harmonics for one blade row. A more traditional approach is included in the paper by employing the TACOMA code in a linearized mode that produces results for a single frequency. These results show that casing irregularity can have a significant influence on the blade surface-pressure characteristics. Further, it is demonstrated that the FINE/Turbo code experienced difficulty predicting the unsteady pressure signal attributed to the “wavy” casing configuration, while at the same time capturing the unsteady signal attributed to the vane passing due to limitations in the current methodology.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Eric A. Crosh ◽  
Charles W. Haldeman ◽  
Michael G. Dunn ◽  
D. Graham Holmes ◽  
Brian E. Mitchell

As part of a proactive effort to investigate the ability of computational fluid dynamics tools to predict time-accurate surface-pressure histories, a combined experimental/computational investigation was performed, examining the effect of rotor shroud (casing) out-of-roundness on the unsteady pressure loading for the blade row of a full-stage turbine. The casing out-of-roundness was idealized by designing a casing ring with a sinusoidal variation. This casing ring was used to replace a flat casing for an existing turbine, and direct comparisons were made between the time-accurate pressure measurements and predictions obtained using the flat and “wavy” casings. For both casing configurations, predictions of the unsteady pressure loading for many locations on the blade and vane were obtained using Numeca’s FINE/TURBO code and General Electric’s turbine and compressor analysis (TACOMA) code. This paper will concentrate on the results obtained for the wavy casing, but the results for the flat casing are presented as a baseline case. The time-accurate surface-pressure measurements were acquired for the vane and blade of a modern, 3D, 1 and 1/2 stage high-pressure turbine operating at the design corrected speed and stage pressure ratio. The research program utilized an uncooled turbine stage for which all three airfoil rows are heavily instrumented at multiple spans to develop a full data set. The vane-blade-vane count for this machine is 38-72-38. The number of waves in the distorted shroud “wavy wall” is approximately 1.5 times the number of vanes. The resulting changes in the aerodynamic surface-pressure measurements were measurable at all blade spanwise locations. Variations in the time-averaged surface pressure of up to 5% of the flat casing values were observed. In addition, the frequency content of the time-resolved blade data for the wavy casing changed substantially from that measured using the flat casing, with changes in both amplitudes and frequencies. Imposing the casing irregularity changed the fundamental physics of the problem from a single frequency and its harmonics to a multifrequency problem with mixed harmonics. The unsteady effects of this type of problem can be addressed using the harmonic method within Numeca’s FINE/TURBO code, which is designed to handle multiple blade passing frequencies and harmonics for one blade row. A more traditional approach is included in this paper by employing the TACOMA code in a linearized mode that produces results for a single frequency. These results show that casing irregularity can have a significant influence on the blade surface-pressure characteristics. Further, it is demonstrated that the FINE/TURBO code experienced difficulty in predicting the unsteady pressure signal attributed to the wavy casing configuration, while at the same time, in capturing the unsteady signal attributed to the vane passing due to limitations in the current methodology.


Author(s):  
Toshinori Watanabe ◽  
Toshihiko Azuma ◽  
Seiji Uzawa ◽  
Takehiro Himeno ◽  
Chihiro Inoue

A fast-response pressure-sensitive paint (PSP) technique was applied to the measurement of unsteady surface pressure of an oscillating cascade blade in a transonic flow. A linear cascade was used, and its central blade was oscillated in a translational manner. The unsteady pressure distributions of the oscillating blade and two stationary neighbors were measured using the fast-response PSP technique, and the unsteady aerodynamic force on the blade was obtained by integrating the data obtained on the pressures. The measurements made with the PSP technique were compared with those obtained by conventional methods for the purpose of validation. From the results, the PSP technique was revealed to be capable of measuring the unsteady surface pressure, which is used for flutter analysis in transonic conditions.


2004 ◽  
Vol 128 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Carmen E. Kachel ◽  
John D. Denton

This paper presents the results of a numerical and experimental investigation of the unsteady pressure field in a three-stage model of a high pressure steam turbine. Unsteady surface pressure measurements were taken on a first and second stage stator blade, respectively. The measurements in the blade passage were supplemented by time resolved measurements between the blade rows. The explanation of the origin of the unsteady pressure fluctuations was supported by unsteady three-dimensional computational fluid dynamic calculations of which the most extensive calculation was performed over two stages. The mechanisms affecting the unsteady pressure field were: the potential field frozen to the upstream blade row, the pressure waves originating from changes in the potential pressure field, the convected unsteady velocity field, and the passage vortex of the upstream blade row. One-dimensional pressure waves and the unsteady variation of the pitchwise pressure gradient due to the changing velocity field were the dominant mechanisms influencing the magnitude of the surface pressure fluctuations. The magnitude of these effects had not been previously anticipated to be more important than other recognized effects.


Author(s):  
Annick D’Auteuil ◽  
Guy L. Larose

The commonly-held assumption that the aerodynamics of rectangular prisms with sharp edges are insensitive to Reynolds number is shown to have limitations. Flow reattachment on the top and/or bottom of the prisms can be related to Reynolds number, Re. Steady and unsteady surface pressure measurements were carried out on nine different rectangular prisms for Re from 0.3×106 to 2.5×106 at several angles of attack, in smooth and turbulent flow. It was observed that the reattachment was dependent on parameters such as fineness ratio, edge treatment, angle of attack, turbulence of the oncoming flow and Reynolds number. Permanent reattachment occurred for prisms with fineness ratio of 4 and fluctuating reattachment took place for rectangular prisms with fineness ratio as low as 2.


2022 ◽  
Author(s):  
Laura Botero ◽  
Eki Liptiay ◽  
Cornelis H. Venner ◽  
Leandro D. de Santana

Sign in / Sign up

Export Citation Format

Share Document