scholarly journals Corrigendum to “The thermoelectric sensor for controlling the gas nitriding process” [Sens. Actuators: A. Phys. 288 (2019) 144–148]

2021 ◽  
Vol 322 ◽  
pp. 112635
Author(s):  
Ireneusz Kocemba ◽  
Jacek Rynkowski ◽  
Walerian Arabczyk
2019 ◽  
Vol 288 ◽  
pp. 144-148 ◽  
Author(s):  
Ireneusz Kocemba ◽  
Jacek Rynkowski ◽  
Walerian Arabczyk

2016 ◽  
Vol 36 (1) ◽  
pp. 18-22 ◽  
Author(s):  
Dominika Panfil ◽  
Piotr Wach ◽  
Michał Kulka ◽  
Jerzy Michalski

Abstract In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ε+γ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Michael G. Fahrmann ◽  
Vinay P. Deodeshmukh ◽  
S. Krishna Srivastava

HAYNES® NS-163® alloy was developed by Haynes International Inc., Kokomo, IN, for high-temperature structural applications by pursuing a dual manufacturing approach: the fabrication of components in the readily weldable and formable mill-annealed condition, and their subsequent strengthening by means of a gas nitriding process. The latter process results in dispersion-strengthening by virtue of formation of internal nitrides. Since this process is diffusion-controlled, component section thicknesses are limited to approximately 2.0 mm (0.080 in.). Microstructures and mechanical properties of nitrided sheet samples are presented. Oxidation resistance and the need for coatings at temperatures exceeding 980 °C (1800 °F) are addressed as well.


Micromachines ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 227 ◽  
Author(s):  
Tso-Sheng Hsieh ◽  
Yi-Chian Chen ◽  
Chia-Chin Chiang

2021 ◽  
Vol 26 (2) ◽  
pp. 5-15
Author(s):  
Tadeusz Żółciak ◽  
Paweł Bilski

The possibility of using technical nitrogen including 0,2% O2 for activation austenitic steels surfaces during gas nitriding were investigated. By changing mole fraction of technical nitrogen i NH3 /N2t mixture one can regulate oxygen potential of gas atmosphere during heating the steel to nitriding temperature and sometimes during nitriding process. Four representative austenitic steels were nitrided with good results at 570°C and under 450°C. New method can be alternative to regulating oxygen potential by air and allows avoiding installing of firing mechanism and safety control.


Sign in / Sign up

Export Citation Format

Share Document