Aggregation induced emission-excited state intramolecular proton transfer based “ off-on ” fluorescent sensor for Al 3+ ions in liquid and solid state

2018 ◽  
Vol 263 ◽  
pp. 585-593 ◽  
Author(s):  
Gulshan Kumar ◽  
Kamaldeep Paul ◽  
Vijay Luxami
2019 ◽  
Author(s):  
Michael Dommett ◽  
Miguel Rivera ◽  
Matthew T. H. Smith ◽  
Rachel Crespo Otero

Aggregation induced emission offers a route to the development of emissive technologies based on solely organic systems. However, maximising fluorescence quantum efficiencies (QE) is a formidable challenge in attaining first-principles materials design, due to the interplay between the electronic structure of the chromophore and the molecular crystal. The identification of radiative and nonradiative channels, and how these are affected by aggregation, can rationalise the emissive properties of materials and aid in the design of yet more efficient fluorophores. In the current work, we examine the mechanism behind aggregation induced emission in two related families of compounds with lasing properties, which undergo excited state intramolecular proton transfer (ESIPT). We systematically investigate competing excited state decay channels in a total of eleven crystals to evaluate the factors needed for efficient ESIPT fluorophores, aided by a full evaluation of the crystal structures, exciton coupling, and exciton hopping rates. We show that in addition to the restriction of nonradiative pathways, an efficient ESIPT is essential to maximise the QE in the solid state. This extensive study of structure-property relationships for fluorophores based on the ESIPT mechanism bridges the understanding of molecular photophysics with crystal structure, accelerating the development of highly efficient solid state emitters.


2019 ◽  
Author(s):  
Michael Dommett ◽  
Miguel Rivera ◽  
Matthew T. H. Smith ◽  
Rachel Crespo Otero

Aggregation induced emission offers a route to the development of emissive technologies based on solely organic systems. However, maximising fluorescence quantum efficiencies (QE) is a formidable challenge in attaining first-principles materials design, due to the interplay between the electronic structure of the chromophore and the molecular crystal. The identification of radiative and nonradiative channels, and how these are affected by aggregation, can rationalise the emissive properties of materials and aid in the design of yet more efficient fluorophores. In the current work, we examine the mechanism behind aggregation induced emission in two related families of compounds with lasing properties, which undergo excited state intramolecular proton transfer (ESIPT). We systematically investigate competing excited state decay channels in a total of eleven crystals to evaluate the factors needed for efficient ESIPT fluorophores, aided by a full evaluation of the crystal structures, exciton coupling, and exciton hopping rates. We show that in addition to the restriction of nonradiative pathways, an efficient ESIPT is essential to maximise the QE in the solid state. This extensive study of structure-property relationships for fluorophores based on the ESIPT mechanism bridges the understanding of molecular photophysics with crystal structure, accelerating the development of highly efficient solid state emitters.


2016 ◽  
Vol 4 (16) ◽  
pp. 3599-3606 ◽  
Author(s):  
Toshiki Mutai ◽  
Tatsuya Ohkawa ◽  
Hideaki Shono ◽  
Koji Araki

The color of ESIPT luminescence of HPIP is tuned in a wide range by the introduction of aryl group(s), and thus a series of PIPs showing blue to red emission is realized.


2020 ◽  
Author(s):  
Dominik Göbel ◽  
Daniel Duvinage ◽  
Tim Stauch ◽  
Boris Nachtsheim

Herein, we present minimalistic single-benzene, excited-state intramolecular proton transfer (ESIPT) based fluorophores as powerful solid state emitters. The very simple synthesis gave access to all four regioisomers of nitrile-substituted 2(oxazolinyl)phenols (MW = 216.1). In respect of their emission properties they can be divided into aggregation-induced emission enhancement (AIEE) luminophores (1-CN and 2-CN), dual state emission (DSE) emitters (3-CN) and aggregation-caused quenching (ACQ) fluorophores (4‐CN). Remarkably, with compound 1-CN we discovered a minimalistic ESIPT based fluorophore with extremely high quantum yield in the solid state ΦF = 87.3% at λem = 491 nm. Furthermore, quantum yields in solution were determined up to ΦF = 63.0%, combined with Stokes shifts up till 11.300 cm–1. Temperature dependent emission mapping, crystal structure analysis and time-dependent density functional theory (TDDFT) calculations gave deep insight into the origin of the emission properties.<br>


2015 ◽  
Vol 7 (12) ◽  
pp. 5028-5033 ◽  
Author(s):  
Hualong Liu ◽  
Xiaoyan Wang ◽  
Yu Xiang ◽  
Aijun Tong

A turn-on detection of cysteine (Cys) based on excited-state intramolecular proton transfer and aggregation-induced emission properties of a salicylaldehyde azine derivative has been established.


2019 ◽  
Vol 160 ◽  
pp. 915-922 ◽  
Author(s):  
Julien Massue ◽  
Abdellah Felouat ◽  
Mathieu Curtil ◽  
Pauline M. Vérité ◽  
Denis Jacquemin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document