Seismic response of underground stations with friction pendulum bearings under horizontal and vertical ground motions

2021 ◽  
Vol 151 ◽  
pp. 106984
Author(s):  
Zhiyi Chen ◽  
Peng Jia
2008 ◽  
Vol 13 (3) ◽  
pp. 282-290 ◽  
Author(s):  
Sashi K. Kunnath ◽  
Emrah Erduran ◽  
Y. H. Chai ◽  
Mark Yashinsky

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dewen Liu ◽  
Yang Liu ◽  
Dongfa Sheng ◽  
Wenyuan Liao

Seismic isolation devices are usually designed to protect structures from the strong horizontal component of earthquake ground shaking. However, the effect of near-fault (NF) vertical ground motions on seismic responses of buildings has become an important consideration due to the observed building damage caused by vertical excitation. As the structure needs to maintain its load bearing capacity, using the horizontal isolation strategy in vertical seismic isolation will lead to the problem of larger static displacement. In particular, the bearings may generate large deformation responses of isolators for NF vertical ground motions. A seismic isolation system including quasi-zero stiffness (QZS) and vertical damper (VD) is used to control NF vertical earthquakes. The characteristics of vertical seismic isolated structures incorporating QZS and VD are presented. The formula for the maximum bearing capacity of QZS isolation considering the stiffness of vertical spring components is obtained by theoretical derivation. From the static analysis, it is found that the static capacity of the QZS isolation system with vertical seismic isolation components increases when the configurative parameter reduces. Seismic response analyses of the seismic isolated structure model with QZS and VD subjected to NF vertical earthquakes are conducted. The results show that seismic responses of the structure can be controlled by setting the appropriate static equilibrium position, vertical isolation period, and vertical damping ratio. Adding a damping ratio is effective in controlling the vertical large deformation of the isolator.


2010 ◽  
Vol 26 (4) ◽  
pp. 999-1016 ◽  
Author(s):  
Zeynep Gülerce ◽  
Norman A. Abrahamson

The vertical ground motion component is disregarded in the design of ordinary highway bridges in California, except for the bridges located in high seismic zones (sites with design horizontal peak ground acceleration greater than 0.6 g). The influence of vertical ground motion on the seismic response of single-bent, two-span highway bridges designed according to Caltrans Seismic Design Code (SDC-2006) is evaluated. A probabilistic seismic hazard framework is used to address the probability of exceeding the elastic capacity for various structural parameters when the vertical component is included. Negative mid-span moment demand is found to be the structural parameter that is most sensitive to vertical accelerations.A series of hazard curves for negative mid-span moment are developed for a suite of sites in Northern California. The annual probability of exceeding the elastic capacity of the negative mid-span moment is as large as 0.01 for the sites close to active faults when the vertical component is included. Simplified approaches based on the distance to major faults or the median design peak acceleration show that there is a large chance (0.4 to 0.65) of exceeding the elastic limit if the current 0.6 g threshold is used for the consideration of vertical ground motions for ordinary highway bridges. The results of this study provide the technical basis for consideration of a revision of the 0.6 g threshold.


Sign in / Sign up

Export Citation Format

Share Document