Seismic response of long span cable-stayed bridge to near-fault vertical ground motions

2014 ◽  
Vol 19 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Bipin Shrestha
2014 ◽  
Vol 875-877 ◽  
pp. 998-1002
Author(s):  
Wei Bing Luo ◽  
Ji Ming Fan ◽  
Ji Lv ◽  
Li Ya Zhang ◽  
Cui Cui Wu

The seismic responses under the action of far-fault and near-fault ground motions of the bridge tower structure of the long-span cable-stayed bridge are numerically discussed by means of the model of the bottom consolidation of the column. The results show that the responses of tower of the cable-stayed bridge correlate well with the properties of the ground motions. The seismic responses of the model have much larger values under the near-fault velocity pulse-like ground motions than those of the counterpart. The frequency of system reduces as the flexibility of structure decreases because of the rigid foundation; The displace response of tower shows that the rigid foundation has little influence on the seismic response of the cable-stayed bridge, while the acceleration response of the tower implies that rigid foundation has adverse effect. Thus, consideration of the soil-pile-superstructure interaction can be meaningful both in theory and reality during the seismic design of long-span cable-stayed bridge structure.


2008 ◽  
Vol 13 (3) ◽  
pp. 282-290 ◽  
Author(s):  
Sashi K. Kunnath ◽  
Emrah Erduran ◽  
Y. H. Chai ◽  
Mark Yashinsky

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dewen Liu ◽  
Yang Liu ◽  
Dongfa Sheng ◽  
Wenyuan Liao

Seismic isolation devices are usually designed to protect structures from the strong horizontal component of earthquake ground shaking. However, the effect of near-fault (NF) vertical ground motions on seismic responses of buildings has become an important consideration due to the observed building damage caused by vertical excitation. As the structure needs to maintain its load bearing capacity, using the horizontal isolation strategy in vertical seismic isolation will lead to the problem of larger static displacement. In particular, the bearings may generate large deformation responses of isolators for NF vertical ground motions. A seismic isolation system including quasi-zero stiffness (QZS) and vertical damper (VD) is used to control NF vertical earthquakes. The characteristics of vertical seismic isolated structures incorporating QZS and VD are presented. The formula for the maximum bearing capacity of QZS isolation considering the stiffness of vertical spring components is obtained by theoretical derivation. From the static analysis, it is found that the static capacity of the QZS isolation system with vertical seismic isolation components increases when the configurative parameter reduces. Seismic response analyses of the seismic isolated structure model with QZS and VD subjected to NF vertical earthquakes are conducted. The results show that seismic responses of the structure can be controlled by setting the appropriate static equilibrium position, vertical isolation period, and vertical damping ratio. Adding a damping ratio is effective in controlling the vertical large deformation of the isolator.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Jin Zhang ◽  
Ke-jian Chen ◽  
Neng-pan Ju ◽  
Shi-xiong Zheng ◽  
Hong-yu Jia ◽  
...  

To study the nonlinear seismic behavior and seismic resistance of the long-span cable-stayed bridges subjected to earthquakes, the multidimensional and multisupported artificial ground motions are synthesized first based on the in situ site conditions of the bridge considering the coherent and traveling wave effects. Then, considering the material nonlinearity of the cable-stayed bridge, a 3D finite element model is established based on the OpenSees platform, and the nonlinear seismic response analysis of the bridge is carried out under the synthetic artificial ground motions. The nonlinear seismic response of main bridge components such as piers, towers, bearings, and cables is analyzed, and key conclusions and observations are drawn.


Sign in / Sign up

Export Citation Format

Share Document