Scattering of plane waves by a 3D canyon in a transversely isotropic fluid-saturated layered half-space

2021 ◽  
Vol 151 ◽  
pp. 106997
Author(s):  
Jianwen Liang ◽  
Yongguang Wang ◽  
Zhenning Ba ◽  
Hao Zhong
Author(s):  
Morteza Eskandari-Ghadi ◽  
Ghasem Gorji-Bandpey ◽  
Azizollah Ardeshir-Behrestaghi ◽  
Seyed Masoud Nabizadeh

1986 ◽  
Vol 53 (2) ◽  
pp. 326-332 ◽  
Author(s):  
S. M. Gracewski ◽  
D. B. Bogy

In Part I of this two-part paper, the analytical solution of time harmonic elastic wave scattering by an interface crack in a layered half space submerged in water is presented. The solution of the problem leads to a set of coupled singular integral equations for the jump in displacements across the crack. The kernels of these integrals are represented in terms of the Green’s functions for the structure without a crack. Analysis of the integral equations yields the form of the singularities of the unknown functions at the crack tip. These singularities are taken into account to arrive at an algebraic approximation for the integral equations that can then be solved numerically. Numerical results in the form of crack tip stress intensity factors are presented for the cases in which the incident disturbance is a harmonic uniform normal or shearing traction applied at the liquid-solid interface. These results are compared with a previously published solution for this problem in the absence of the liquid. In Part II, which immediately follows Part I in the same journal issue, the more realistic disturbances of plane waves and bounded beams incident from the liquid are considered.


2000 ◽  
Vol 16 (1) ◽  
pp. 37-44
Author(s):  
Franz Ziegler ◽  
Piotr Borejko

ABSTRACTBased on a landmark paper by Pao and Gajewski, some novel developments of the method of generalized ray integrals are discussed. The expansion of the dynamic Green's function of the infinite space into plane waves allows benchmark 3-D solutions in the layered half-space and even enters the background formulation of elastic-viscoplastic wave propagation. New developments of software of combined symbolic-numerical manipulation and parallel computing make the method a competitive solution technique.


2012 ◽  
Vol 42 (3) ◽  
pp. 33-60 ◽  
Author(s):  
Baljeet Singh ◽  
Anand Yadav

Reflection of Plane Waves in a Rotating Transversly Isotropic Magneto-Thermoelastic Solid Half-SpaceThe governing equations of a rotating transversely isotropic magneto-thermoelastic medium are solved to obtain the velocity equation, which indicates the existence of three quasi plane waves. Reflection of these plane waves from a stress-free thermally insulated surface is studied to obtain the reflection coefficients of various reflected waves. The effects of anisotropy, rotation, thermal and magnetic fields are shown graphically on these coefficients.


1970 ◽  
Vol 60 (5) ◽  
pp. 1625-1651 ◽  
Author(s):  
N. C. Tsai ◽  
G. W. Housner

Abstract A new method is presented for computing the transient response of a set of horizontally stratified, linearly elastic layers overlying a uniform half-space and excited by vertically incident, transient plane waves. In addition, a simple approximate method of satisfactory accuracy is developed that reduces the computing time required. Calculated responses are compared with motions recorded under Union Bay in Seattle to evaluate the agreement between recorded and calculated motions.


Sign in / Sign up

Export Citation Format

Share Document