Robust maximum power point tracker using sliding mode controller for the three-phase grid-connected photovoltaic system

Solar Energy ◽  
2007 ◽  
Vol 81 (3) ◽  
pp. 405-414 ◽  
Author(s):  
Il-Song Kim
2009 ◽  
Vol 1 (07) ◽  
pp. 527-530 ◽  
Author(s):  
M.I. Arteaga Orozco ◽  
J.R. Vázquez ◽  
P. Salmerón ◽  
S.P. Litrán ◽  
F.J. Alcántara

Author(s):  
Nour-Eddine Tariba ◽  
Naima Ikken ◽  
Ahmed Haddou ◽  
Abdelhadi Bouknadel ◽  
Hafsa El Omari ◽  
...  

<p>The output power generated in the photovoltaic modules depends both on the solar radiation and the temperature of the solar cells. To maximize the efficiency of the system, it is required to monitor the maximum power point of the photovoltaic system. For this purpose, monitoring the maximum power point (MPPT) of photovoltaic systems should be as quick and accurately as possible for increasing energy production, which ultimately increases the cost-efficiency of the photovoltaic system. This paper proposes a new approach for MPPT) using the concept of the integral sliding mode controller (ISMC) to ensure fast and precise monitoring of the peak power. The performance of the ISMC is significantly influenced by the choice of the sliding surface. To assess the reliability ISMC control, the results have been compared with those of a PI controller. The results obtained are used to evaluate the performance of the ISMC strategy under different climatic conditions. Finally, the effectiveness of the proposed solution is confirmed using simulations in PSIM tools and experimental results were used to evaluate the effectiveness of the proposed approach.</p>


Author(s):  
Sattianadan D ◽  
Roopam Jha ◽  
Deepak Kumar Nayak

This paper presents a method to track the maximum power point for an isolated grid connected photovoltaic system. The method used to achieve this goal is sliding mode control. A high frequency flyback converter topology working in continuous conduction mode is used to boost the voltage and also provides galvanic isolation between input and output side. An inverter is used to invert the power for a grid connected operation. Therefore, the primary objective of this study is to design a sliding mode controller which can track maximum power driving a high frequency flyback converter and demonstrate its practicality as a higly efficient maximum power point tracker. This system is modelled and tested in MATLAB SIMULINK. To verify the results a practical implementation of sliding mode controller with high frequency flyback transformer is performed in a hardware setup


2019 ◽  
Vol 52 (7-8) ◽  
pp. 896-912
Author(s):  
Ravichandran Chinnappan ◽  
Premalatha Logamani ◽  
Rengaraj Ramasubbu

This article presents a reliable and efficient photovoltaic sliding mode voltage-controlled maximum power point tracking DC-DC converter–active power filter integration system to supply real power to grid. This integrated active power filter system performs power quality enhancement features to compensate current harmonics to make distortion-free grid supply current and reactive power employing nonlinear loads. The proposed proportional–integral–derivative–based sliding mode controller is designed with fixed-frequency pulse-width modulation based on equivalent control approach. The main objective of this paper is to design a photovoltaic system with a new sliding surface to force the photovoltaic voltage to follow the reference maximum power point voltage with the alleviation of slow transient response and disadvantages of chattering effects of variable-frequency hysteresis modulation sliding mode controller–maximum power point tracking. The perturbations caused by the uncertainties in climatic conditions and converter output bulk oscillations during grid integration are also mitigated. The features of the proposed photovoltaic–active power filter integration system are confirmed at different operating conditions through PSIM simulation software, and its performance is also compared with a conventional variable-frequency sliding mode-controlled maximum power point tracking. The obtained simulation and experimental results give good dynamic response under various operating conditions of environmental and local load conditions.


Sign in / Sign up

Export Citation Format

Share Document