Theoretical formulation and experimental validation of the input–output modeling approach for large solar thermal systems

Solar Energy ◽  
2010 ◽  
Vol 84 (2) ◽  
pp. 245-255 ◽  
Author(s):  
Vassilis Belessiotis ◽  
Emmanouil Mathioulakis ◽  
Elias Papanicolaou
Author(s):  
Jiang Qingyang ◽  
Yang Jichun ◽  
Zeng Yanying ◽  
Fu Huide

ABSTRACT Compared with photovoltaic (PV) or solar thermal (ST) system alone, the hybrid photovoltaic/thermal (PV/T) system has many advantages such as simultaneous production of electrical and thermal energies, efficient utilization on solar energy, space reduction and so on. However, there is limited data on both the energy and exergy performance comparisons of these three solar systems, especially for annual performance data. This paper aims to present a comparative study on the performances of the PV, ST and PV/T systems by a series of full-day experiments. Energy and exergy performances of these three solar utilization systems were all calculated and analyzed. Moreover, two typical evaluation methods, i.e. semi-empirical system efficiency model method and input–output method, were also used for evaluating the performances of these systems. Finally, based on the input–output method, the annual performances of the PV, ST and PV/T systems under typical meteorological conditions of Hong Kong region were predicted. The results show that the ST system has the highest total energy gain and energy efficiency and the PV system has the highest total exergy gain and exergy efficiency of these three systems. However, by a comprehensive consideration on the energy and exergy performances, the PV/T system has the best overall performance of these three solar systems.


2018 ◽  
Vol 176 ◽  
pp. 99-109 ◽  
Author(s):  
Angeliki Kylili ◽  
Paris A. Fokaides ◽  
Andreas Ioannides ◽  
Soteris Kalogirou

2021 ◽  
pp. 60-71
Author(s):  
Tshewang Darjay ◽  
Cheku Dorji ◽  
Tshewang Lhendup ◽  
Martin Elborg

The Royal Government of Bhutan has accorded the highest priority towards diversifying the energy-mix through the promotion of renewable energy technologies. There is a national target to generate 3 MW equivalent of energy from the installation of solar thermal systems alone. However, little investment and priority are given for development of solar thermal applications. Some of the present existing solar water heating (SWH) systems are exhibiting faults which leads to low consumer confidence in SWH technology due to the non-functioning of previous installations which is very detrimental in this introductory stage. This study aims to identify problems of existing SWH systems through field surveys and develop a draft guideline to avoid faults in the future. To analyse the problems with existing SWH systems in Bhutan, the first phase of the study consists of collecting secondary information and opinion from the relevant government sector, local installing companies and end-users. The information on the manufacturer’s products, policy barriers, markets and consumer challenges is also collected. Base on this information, findings on the limitation of existing policy instrument and gap in demand and supply side is described. The second phase of the study comprises field visits to existing SWH system sites. The field surveys of twelve representative existing SWH systems are analyzed. Out of twelve sites, eight SWH systems had critical faults which causes major failure of the system and the other four sites had minor faults. To analyse the faults of existing SWH systems, faults are classified into design faults, plumbing circuit faults, solar collector faults, absorber faults, installation faults and user behavior faults. The major faults which lead to the failure of the existing SWH system are plumbing failure, condensation inside the collector and absorber tube leakage. The causes and solutions of the faults are discussed.


Sign in / Sign up

Export Citation Format

Share Document