scholarly journals Optimal design of phase change material storage for steam production using annual simulation

Solar Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 494-507 ◽  
Author(s):  
Prashant Sharan ◽  
Craig Turchi ◽  
Parthiv Kurup
2015 ◽  
Vol 806 ◽  
pp. 203-213
Author(s):  
Tina Kegl

This paper deals with an optimal design solar tower power plant. Special attention is focused on the central receiver system and heat storage materials. In order to get an effective power plant, a simple mathematical model to calculate the solar energy, concentrated on the solar receiver during one year, is developed. The model can predict the delivered energy in dependence on the arrangement of the heliostats and the height of the solar receiver. By using an optimizer, a plant of 5 MW power is optimized in order to produce a maximum of electrical energy during the year on the prescribed area. On the basis of analysis of heat storage materials, KNO3, acting as phase change material (PCM), is shown to be suitable for heat storage from the thermal, physical, kinetic, chemical, and economic point of view.


2013 ◽  
Vol 649 ◽  
pp. 295-298
Author(s):  
Lubomir Klimes ◽  
Pavel Charvát ◽  
Josef Stetina

The paper deals with the mathematical model of the multi-layer wall containing the phase change material (PCM). The model utilizes the effective heat capacity method for modeling the latent heat of phase change and the control volume method is used for the discretization of the model. The utilization of the model is then demonstrated on the problem of the optimal design of the multi-layer wall with the PCM. The TMY2 data for the city of Brno were used in simulations as operational conditions. The main attention is aimed at the determination of the optimal thickness of the PCM layer for the multi-layer wall design with various thicknesses of the masonry.


2018 ◽  
Vol 49 (6) ◽  
pp. 509-528 ◽  
Author(s):  
Orawan Aumporn ◽  
Belkacem Zeghmati ◽  
Xavier Chesneau ◽  
Serm Janjai

2018 ◽  
Author(s):  
Ryohei Gotoh ◽  
Tsuyoshi Totani ◽  
Masashi Wakita ◽  
Harunori Nagata

Sign in / Sign up

Export Citation Format

Share Document