Flow and heat transfer simulation in porous volumetric solar receivers by non-orthogonal multiple-relaxation time lattice Boltzmann method

Solar Energy ◽  
2020 ◽  
Vol 201 ◽  
pp. 409-419 ◽  
Author(s):  
Ying Zhang ◽  
Yichen Huang ◽  
Meng Xu ◽  
Jie Lei ◽  
Zhihao Li ◽  
...  
Author(s):  
Ammar Tariq ◽  
Zhenyu Liu ◽  
Zhiyu Mu ◽  
Huiying Wu

Abstract Understanding flow and heat transfer in porous media is a matter of prime concern for micro devices. In this work, slip flow and heat transfer of gaseous fluid through the confined porous media is numerically simulated using a multiple-relaxation-time lattice Boltzmann method. The method is employed using an effective curved boundary treatment based on non-equilibrium extrapolation and counter-extrapolation methods. Nusselt number prediction for varying porosity, Knudsen and Reynolds number are studied. Based on the obtained numerical results, it is proved that the current technique can be used to effectively model slip flow and heat transfer at pore-scale.


2003 ◽  
Vol 17 (01n02) ◽  
pp. 183-187 ◽  
Author(s):  
G. H. TANG ◽  
W. Q. TAO ◽  
Y. L. HE

Forced convective flow and heat transfer between two parallel plates are studied using the lattice Boltzmann method (LBM) in this paper. Three kinds of thermal boundary conditions at the top and bottom plates are studied. The velocity field is simulated using density distribution function while a separate internal energy distribution function is introduced to simulate the temperature field. The results agree well with data from traditional finite volume method (FVM) and analytical solutions. The present work indicates that LBM may be developed as a promising method for predicting convective heat transfer because of its many inherent advantages.


Sign in / Sign up

Export Citation Format

Share Document