Corrigendum to “Accelerated thermal cycle and chemical stability testing of Polyethylene glycol (PEG) 6000 for solar thermal energy storage” [Sol. Energy Mater. Sol. Cells, 147 (2016) 235–239]

2016 ◽  
Vol 151 ◽  
pp. 191
Author(s):  
R.K. Sharma ◽  
P. Ganesan ◽  
V.V. Tyagi ◽  
T.M.I. Mahlia ◽  
M. Mehrali
2019 ◽  
Vol 33 (11) ◽  
pp. 12041-12051 ◽  
Author(s):  
Md. Hasan Zahir ◽  
Kashif Irshad ◽  
Md. Abdul Aziz ◽  
Md Shafiullah ◽  
Mohammad Mizanur Rahman ◽  
...  

2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


2015 ◽  
Vol 787 ◽  
pp. 27-31
Author(s):  
M. Gajendiran ◽  
P.M. Sivaram ◽  
N. Nallusamy

In the present work the thermal performance of Phase Change Material (PCM) based solar thermal energy storage system under the influence of different heat transfer fluids (HTF) have been investigated. Water, Ethylene Glycol–water and Copper nanofluid are selected as HTF. Paraffin is used as PCM and encapsulated in cylindrical capsules. The thermal energy storage (TES) tank acts as a storage unit consisting PCM capsules packed in three beds surrounded by water, which acts as sensible heat storage (SHS) material. HTF circulated by a pump transfers heat from solar flat plate collector (FPC) to the TES tank. 25% ethylene glycol -75% water HTF is prepared by mixing ethylene glycol (EG) with water. Copper-distilled water nanofluids (0.3% by weight) are prepared using prolonged sonication with sodium dodecyl benzene sulphonate (SDBS) as the surfactant. Various performance parameters such as charging time, instantaneous heat stored, cumulative heat stored and system efficiency are studied for various HTFs. It is found that the charging time is reduced by 33.3% for copper nanofluid and 22.2% for ethylene glycol- water mixture HTFs. It is also observed that there is an increase in system efficiency and cumulative heat stored with reference to charging time for these HTFs when compared with conventional HTF 1 i.e. water.


Sign in / Sign up

Export Citation Format

Share Document