scholarly journals Oscillation of harmonic functions for subordinate Brownian motion and its applications

2013 ◽  
Vol 123 (2) ◽  
pp. 422-445 ◽  
Author(s):  
Panki Kim ◽  
Yunju Lee
1999 ◽  
Vol 51 (4) ◽  
pp. 673-744 ◽  
Author(s):  
Martin T. Barlow ◽  
Richard F. Bass

AbstractWe consider a class of fractal subsets of d formed in a manner analogous to the construction of the Sierpinski carpet. We prove a uniform Harnack inequality for positive harmonic functions; study the heat equation, and obtain upper and lower bounds on the heat kernel which are, up to constants, the best possible; construct a locally isotropic diffusion X and determine its basic properties; and extend some classical Sobolev and Poincaré inequalities to this setting.


2014 ◽  
Vol 124 (6) ◽  
pp. 2228-2248 ◽  
Author(s):  
Patrick J. Fitzsimmons ◽  
Kristin E. Kuter

2011 ◽  
Vol 2012 (22) ◽  
pp. 5182-5218 ◽  
Author(s):  
Sara Brofferio ◽  
Maura Salvatori ◽  
Wolfgang Woess

2016 ◽  
Vol 16 (02) ◽  
pp. 1660001
Author(s):  
Pablo Lessa

We introduce the notion of a stationary random manifold and develop the basic entropy theory for it. Examples include manifolds admitting a compact quotient under isometries and generic leaves of a compact foliation. We prove that the entropy of an ergodic stationary random manifold is zero if and only if the manifold satisfies the Liouville property almost surely, and is positive if and only if it admits an infinite dimensional space of bounded harmonic functions almost surely. Upper and lower bounds for the entropy are provided in terms of the linear drift of Brownian motion and average volume growth of the manifold. Other almost sure properties of these random manifolds are also studied.


2020 ◽  
Vol 30 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Terhi Kaarakka

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + ⋯ + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , … , x n ∈ R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ △ h = x n 2 ▵ - n - 2 x n ∂ ∂ x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document