scholarly journals Asymptotic normality of the principal components of functional time series

2013 ◽  
Vol 123 (5) ◽  
pp. 1546-1562 ◽  
Author(s):  
Piotr Kokoszka ◽  
Matthew Reimherr
Signals ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 353-365
Author(s):  
Matthieu Saumard ◽  
Bilal Hadjadji

In this paper, we investigate the causality in the sense of Granger for functional time series. The concept of causality for functional time series is defined, and a statistical procedure of testing the hypothesis of non-causality is proposed. The procedure is based on projections on dynamic functional principal components and the use of a multivariate Granger test. A comparative study with existing procedures shows the good results of our test. An illustration on a real dataset is provided to attest the performance of the proposed procedure.


2018 ◽  
Vol 39 (4) ◽  
pp. 502-522 ◽  
Author(s):  
Łukasz Kidziński ◽  
Piotr Kokoszka ◽  
Neda Mohammadi Jouzdani

2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Alexander Kushnir ◽  
Alexander Varypaev

The publication is devoted to studying asymptotic properties of statistical estimates of the distribution parameters u∈Rq of a multidimensional random stationary time series zt∈Rm, t∈ℤ satisfying the strong mixing conditions. We consider estimates u^nδ(z¯n), z¯n=(z1T,…,znT)T∈Rmn that provide in asymptotic n→∞ the maximum values for some objective functions Qn(z¯n;u), which have properties similar to the well-known property of local asymptotic normality. These estimates are constructed by solving the equations δn(z¯n;u)=0, where δn(z¯n;u) are arbitrary functions for which δn(z¯n;u)−gradhQn(z¯n;u+n−1/2h)→0(n→∞) in Pn,u(z¯n)-probability uniformly on u∈U, were U is compact in Rq. In many cases, the estimates u^nδ(z¯n) have the same asymptotic properties as well-known M-estimates defined by equations u^nQ(z¯n)=arg maxu∈UQn(z¯n;u) but often can be much simpler computationally. We consider an algorithmic method for constructing estimates u^nδ(z¯n), which is similar to the accumulation method first proposed by R. Fischer and rigorously developed by L. Le Cam. The main theoretical result of the article is the proof of the theorem, in which conditions of the asymptotic normality of estimates u^nδ(z¯n) are formulated, and the expression is proposed for their matrix of asymptotic mean-square deviations limn→∞nEn,u{(u^δ(z¯n)−u)(u^δ(z¯n)−u)T}.


Sign in / Sign up

Export Citation Format

Share Document