scholarly journals Zero-sum risk-sensitive stochastic games on a countable state space

2014 ◽  
Vol 124 (1) ◽  
pp. 961-983 ◽  
Author(s):  
Arnab Basu ◽  
Mrinal Kanti Ghosh
2018 ◽  
Vol 55 (3) ◽  
pp. 728-741 ◽  
Author(s):  
János Flesch ◽  
Arkadi Predtetchinski ◽  
William Sudderth

Abstract We consider positive zero-sum stochastic games with countable state and action spaces. For each player, we provide a characterization of those strategies that are optimal in every subgame. These characterizations are used to prove two simplification results. We show that if player 2 has an optimal strategy then he/she also has a stationary optimal strategy, and prove the same for player 1 under the assumption that the state space and player 2's action space are finite.


2017 ◽  
Vol 32 (4) ◽  
pp. 626-639 ◽  
Author(s):  
Zhiyan Shi ◽  
Pingping Zhong ◽  
Yan Fan

In this paper, we give the definition of tree-indexed Markov chains in random environment with countable state space, and then study the realization of Markov chain indexed by a tree in random environment. Finally, we prove the strong law of large numbers and Shannon–McMillan theorem for Markov chains indexed by a Cayley tree in a Markovian environment with countable state space.


1987 ◽  
Vol 24 (02) ◽  
pp. 347-354 ◽  
Author(s):  
Guy Fayolle ◽  
Rudolph Iasnogorodski

In this paper, we present some simple new criteria for the non-ergodicity of a stochastic process (Yn ), n ≧ 0 in discrete time, when either the upward or downward jumps are majorized by i.i.d. random variables. This situation is encountered in many practical situations, where the (Yn ) are functionals of some Markov chain with countable state space. An application to the exponential back-off protocol is described.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 253 ◽  
Author(s):  
Alexander Zeifman ◽  
Victor Korolev ◽  
Yacov Satin

This paper is largely a review. It considers two main methods used to study stability and to obtain appropriate quantitative estimates of perturbations of (inhomogeneous) Markov chains with continuous time and a finite or countable state space. An approach is described to the construction of perturbation estimates for the main five classes of such chains associated with queuing models. Several specific models are considered for which the limit characteristics and perturbation bounds for admissible “perturbed” processes are calculated.


1973 ◽  
Vol 73 (1) ◽  
pp. 119-138 ◽  
Author(s):  
Gerald S. Goodman ◽  
S. Johansen

1. SummaryWe shall consider a non-stationary Markov chain on a countable state space E. The transition probabilities {P(s, t), 0 ≤ s ≤ t <t0 ≤ ∞} are assumed to be continuous in (s, t) uniformly in the state i ε E.


Sign in / Sign up

Export Citation Format

Share Document