Biomechanical study of pedicle screw fixation in severely osteoporotic bone*1

2004 ◽  
Vol 4 (4) ◽  
pp. 402-408 ◽  
Author(s):  
S COOK
Spine ◽  
2005 ◽  
Vol 30 (22) ◽  
pp. 2530-2537 ◽  
Author(s):  
Vedat Deviren ◽  
Emre Acaroglu ◽  
Joe Lee ◽  
Masaru Fujita ◽  
Serena Hu ◽  
...  

2014 ◽  
Vol 2 (4) ◽  
pp. 248-259 ◽  
Author(s):  
Wenhai Wang ◽  
George R. Baran ◽  
Hitesh Garg ◽  
Randal R. Betz ◽  
Missoum Moumene ◽  
...  

2010 ◽  
Vol 17 (3) ◽  
pp. 364-367 ◽  
Author(s):  
Yuichi Kasai ◽  
Tadashi Inaba ◽  
Takaya Kato ◽  
Yoshihiro Matsumura ◽  
Koji Akeda ◽  
...  

2020 ◽  
pp. 219256822090561
Author(s):  
Ryan DenHaese ◽  
Anup Gandhi ◽  
Chris Ferry ◽  
Sam Farmer ◽  
Randall Porter

Study Design: In vitro cadaveric biomechanical study. Objective: Biomechanically characterize a novel lateral lumbar interbody fusion (LLIF) implant possessing integrated lateral modular plate fixation (MPF). Methods: A human lumbar cadaveric (n = 7, L1-L4) biomechanical study of segmental range-of-motion stiffness was performed. A ±7.5 Nċm moment was applied in flexion/extension, lateral bending, and axial rotation using a 6 degree-of-freedom kinematics system. Specimens were tested first in an intact state and then following iterative instrumentation (L2/3): (1) LLIF cage only, (2) LLIF + 2-screw MPF, (3) LLIF + 4-screw MPF, (4) LLIF + 4-screw MPF + interspinous process fixation, and (5) LLIF + bilateral pedicle screw fixation. Comparative analysis of range-of-motion outcomes was performed between iterations. Results: Key biomechanical findings: (1) Flexion/extension range-of-motion reduction with LLIF + 4-screw MPF was significantly greater than LLIF + 2-screw MPF ( P < .01). (2) LLIF with 2-screw and 4-screw MPF were comparable to LLIF with bilateral pedicle screw fixation in lateral bending and axial rotation range-of-motion reduction ( P = 1.0). (3) LLIF + 4-screw MPF and supplemental interspinous process fixation range-of-motion reduction was comparable to LLIF + bilateral pedicle screw fixation in all directions ( P ≥ .6). Conclusions: LLIF with 4-screw MPF may provide inherent advantages over traditional 2-screw plating modalities. Furthermore, when coupled with interspinous process fixation, LLIF with MPF is a stable circumferential construct that provides biomechanical utility in all principal motions.


Sign in / Sign up

Export Citation Format

Share Document