scholarly journals Extracellular matrix-regulated neural differentiation of human multipotent marrow progenitor cells enhances functional recovery after spinal cord injury

2014 ◽  
Vol 14 (10) ◽  
pp. 2488-2499 ◽  
Author(s):  
Win-Ping Deng ◽  
Chi-Chiang Yang ◽  
Liang-Yo Yang ◽  
Chun-Wei D. Chen ◽  
Wei-Hong Chen ◽  
...  
2014 ◽  
Vol 23 (11) ◽  
pp. 1451-1464 ◽  
Author(s):  
Hiroki Iwai ◽  
Satoshi Nori ◽  
Soraya Nishimura ◽  
Akimasa Yasuda ◽  
Morito Takano ◽  
...  

Transplantation of neural stem/progenitor cells (NS/PCs) promotes functional recovery after spinal cord injury (SCI); however, few studies have examined the optimal site of NS/PC transplantation in the spinal cord. The purpose of this study was to determine the optimal transplantation site of NS/PCs for the treatment of SCI. Wild-type mice were generated with contusive SCI at the T10 level, and NS/PCs were derived from fetal transgenic mice. These NS/PCs ubiquitously expressed ffLuc-cp156 protein (Venus and luciferase fusion protein) and so could be detected by in vivo bioluminescence imaging 9 days postinjury. NS/PCs (low: 250,000 cells per mouse; high: 1 million cells per mouse) were grafted into the spinal cord at the lesion epicenter (E) or at rostral and caudal (RC) sites. Phosphate-buffered saline was injected into E as a control. Motor functional recovery was better in each of the transplantation groups (E-Low, E-High, RC-Low, and RC-High) than in the control group. The photon counts of the grafted NS/PCs were similar in each of the four transplantation groups, suggesting that the survival of NS/PCs was fairly uniform when more than a certain threshold number of cells were transplanted. Quantitative RT-PCR analyses demonstrated that brain-derived neurotropic factor expression was higher in the RC segment than in the E segment, and this may underlie why NS/PCs more readily differentiated into neurons than into astrocytes in the RC group. The location of the transplantation site did not affect the area of spared fibers, angiogenesis, or the expression of any other mediators. These findings indicated that the microenvironments of the E and RC sites are able to support NS/PCs transplanted during the subacute phase of SCI similarly. Optimally, a certain threshold number of NS/PCs should be grafted into the E segment to avoid damaging sites adjacent to the lesion during the injection procedure.


Author(s):  
Minghao Yao ◽  
Jinrui Li ◽  
Junni Zhang ◽  
Shanshan Ma ◽  
Luyu Wang ◽  
...  

A dual-enzymatically cross-linked gelatin hydrogel is proposed to undergo direct neuronal differentiation of hUC-MSCs for promoting regeneration of spinal cord injury mice.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Cui ◽  
Yanyun Yin ◽  
Zhifeng Xiao ◽  
Yannan Zhao ◽  
Bing Chen ◽  
...  

Abstract Background Emerging evidence suggests that miR-124 performs important biological functions in neural stem cells (NSCs); it regulates NSC behavior and promotes the differentiation of NSCs into neurons, but the exact molecular mechanism remains unknown. And also, the role of miR-124 during spinal cord injury regeneration is unclear. Materials and methods In order to explore the function of miR-124 in neural differentiation, the molecular markers (Tuj1, Map2, and GFAP) correlated with the differentiation of NSCs were detected by immunofluorescence staining both in cultured mouse spinal cord progenitor cells (SC-NPCs) and in spinal cord injury (SCI) animal models. The migration ability and apoptosis of cultured SC-NPCs were also evaluated by Transwell migration assay and TUNEL assay. In addition, the relative expression of lnRNA Neat1- and Wnt/β-catenin signaling-related genes were detected by quantitative real-time PCR. Results In this study, we revealed that lncRNA Neat1 is involved in regulating Wnt/β-catenin signaling that is activated by miR-124 in SC-NPCs. LncRNA Neat1 was also found to play an important role in regulating neuronal differentiation, apoptosis, and migration of SC-NPCs. Furthermore, we demonstrated that overexpression of miR-124 resulted in elevated Neat1 expression, accompanied with the functional recovery of locomotion in a mouse model of spinal cord injury. Conclusions Our results confirm the therapeutic effectiveness of miR-124 on the functional recovery of injured spinal cord, supporting the rationale and feasibility of miR-124 for spinal cord injury treatment in future clinical therapy. Furthermore, we concluded that the miR-124-Neat1-Wnt/β-catenin signaling axis is involved in regulating the cell function of SC-NPCs, and this may offer novel therapeutic avenues for future treatment of SCI.


2015 ◽  
Vol 34 (23) ◽  
pp. 2971-2983 ◽  
Author(s):  
Jeong Beom Kim ◽  
Hyunah Lee ◽  
Marcos J Araúzo‐Bravo ◽  
Kyujin Hwang ◽  
Donggyu Nam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document