Seasonal effects on ammonia, nitrous oxide, and methane emissions for beef cattle excreta and urea fertilizer applied to a tropical pasture

2019 ◽  
Vol 194 ◽  
pp. 104341 ◽  
Author(s):  
Abmael da Silva Cardoso ◽  
Serena Capriogli Oliveira ◽  
Estella Rosseto Janusckiewicz ◽  
Liziane Figueiredo Brito ◽  
Eliane da Silva Morgado ◽  
...  
2021 ◽  
Vol 64 (4) ◽  
pp. 1211-1225
Author(s):  
David B. Parker ◽  
Kenneth D. Casey ◽  
Will Willis ◽  
Beverly Meyer

HighlightsNitrous oxide and methane emissions were measured from a commercial beef feedyard following large rainfall events.Nitrous oxide emissions dropped below detection levels for ten days following a 77 mm rainfall event.Daily N2O and CH4 emissions followed a diel pattern, peaking at manure temperatures of 36°C to 38°C.Results will be used to refine empirical models for predicting GHG emissions from open-lot feedyards.Abstract. More than six million beef cattle are fed annually in feedyards on the semiarid Southern Great Plains (SGP). Manure deposited on the open-lot pen surfaces contributes to greenhouse gas (GHG) emissions. Nitrous oxide (N2O) and methane (CH4) are GHGs linked to climate change, and both have global warming potentials greater than carbon dioxide (CO2). Two sampling campaigns were conducted in 2019 to quantify N2O and CH4 emissions from open-lot pen surfaces. The occurrence of large, unforecast rainfall events during both campaigns provided an opportunity to compare GHG emissions from the dry manure before rainfall and from the wetted pen surface for one to two weeks following precipitation. Temporal variability was quantified by continuous sampling using six to eight automated flux chambers, a multiplexer system, and real-time analyzers. Spatial variability was quantified using a recirculating portable chamber on a 5 × 8 grid. Nitrous oxide emissions dropped below detection levels for ten days after the precipitation event. Nitrous oxide emissions were related to nitrification or other aerobic processes. Methane emissions dropped below detection levels for five days after the precipitation event and then increased to pre-rainfall levels by day 8. When present, N2O and CH4 emissions followed a diel pattern, with the highest emissions occurring during the afternoon when manure pack temperatures at the 25 mm depth were 36°C to 38°C and ambient temperatures were 31°C to 32°C. Average CH4 emissions from the feedyard pen surface were 96-fold lower than estimated enteric CH4 emissions. The results of this field research will be used to refine empirical models for predicting annual N2O and CH4 emissions from open-lot beef cattle feedyards on the semiarid SGP. Keywords: Beef cattle, Flux chamber, Greenhouse gas, Manure, Nitrous oxide, Rainfall.


2021 ◽  
Vol 187 ◽  
pp. 102995
Author(s):  
Isabella C.F. Maciel ◽  
Fabiano A. Barbosa ◽  
Bruno J.R. Alves ◽  
Ramon C. Alvarenga ◽  
Thierry R. Tomich ◽  
...  

2011 ◽  
Vol 91 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Aklilu Alemu ◽  
K. H. Ominski ◽  
E. Kebreab

Alemu, A. W., Ominski, K. H. and Kebreab, E. 2011. Estimation of enteric methane emissions trends (1990–2008) from Manitoba beef cattle using empirical and mechanistic models. Can. J. Anim. Sci. 91: 305–321. The objective of this study was to estimate and assess trends in enteric methane (CH4) emissions from the Manitoba beef cattle population from the base year of 1990 to 2008 using mathematical models. Two empirical (statistical) models: Intergovernmental Panel on Climate Change (IPCC) Tier 2 and a nonlinear equation (Ellis), and two dynamic mechanistic models: MOLLY (v3) and COWPOLL were used. Beef cattle in Manitoba were categorized in to 29 distinct subcategories based on management practice, physiological status, gender, age and production environment. Data on animal performance, feeding and management practices and feed composition were collected from the literature as well as from provincial and national sources. Estimates of total enteric CH4 production from the Manitoba beef cattle population varied between 0.9 and 2.4 Mt CO2 eq. from 1990 to 2008. Regardless of the type of models used, average CH4 emissions for 2008 were estimated to be 45.2% higher than 1990 levels. More specifically, CH4 emissions tended to increase between 1990 and 1996. Emissions were relatively stable between 1996 and 2002, increased between 2003 and 2005, but declined by 13.2% between 2005 and 2008, following the same trend as that observed in the beef cattle population. Models varied in their estimates of CH4 conversion rate (Ym, percent gross energy intake), emission factor (kg CH4 head−1 yr−1) and CH4 production. Total CH4 production estimates ranged from 1.2 to 2.0 Mt CO2 eq. for IPCC Tier 2, from 0.9 to 1.5 Mt CO2 eq. for Ellis, from 1.3 to 2.1 Mt CO2 eq. for COWPOLL and from 1.5 to 2.4 Mt CO2 eq. for MOLLY. The results indicate that enteric CH4 estimates and emission trends in Manitoba were influenced by the type of model and beef cattle population. As such, it is necessary to use appropriate models for reliable estimates for enteric CH4 inventory. A more robust approach may be to integrate different models by using mechanistic models to estimate regional Ym values, which may then be used as input for the IPCC Tier 2 model.


2016 ◽  
Vol 45 (12) ◽  
pp. 760-767 ◽  
Author(s):  
Isabela Pena Carvalho de Carvalho ◽  
◽  
Giovani Fiorentini ◽  
Alexandre Berndt ◽  
Pablo de Souza Castagnino ◽  
...  

2014 ◽  
Vol 7 ◽  
pp. ASWR.S12841 ◽  
Author(s):  
Orlando A. Aguilar ◽  
Ronaldo Maghirang ◽  
Charles W. Rice ◽  
Steven L. Trabue ◽  
Larry E. Erickson

Emission of greenhouse gases, including nitrous oxide (N2O), from open beef cattle feedlots is becoming an environmental concern; however, research measuring emission rates of N2O from open beef cattle feedlots has been limited. This study was conducted to quantify N2O emission fluxes as affected by pen surface conditions, in a commercial beef cattle feedlot in the state of Kansas, USA, from July 2010 through September 2011. The measurement period represented typical feedlot conditions, with air temperatures ranging from -24 to 39°C. Static flux chambers were used to collect gas samples from pen surfaces at 0, 15, and 30 minutes. Gas samples were analyzed with a gas chromatograph and from the measured concentrations, fluxes were calculated. Median emission flux from the moist/muddy surface condition was 2.03 mg m−2 hour−1, which was about 20 times larger than the N2O fluxes from the other pen surface conditions. In addition, N2O peaks from the moist/muddy pen surface condition were six times larger than emission peaks previously reported for agricultural soils.


2016 ◽  
Vol 94 (suppl_2) ◽  
pp. 53-54 ◽  
Author(s):  
A. L. Knoell ◽  
C. L. Anderson ◽  
A. C. Pesta ◽  
G. E. Erickson ◽  
T. J. Klopfenstein ◽  
...  

2016 ◽  
Vol 154 (5) ◽  
pp. 812-827 ◽  
Author(s):  
M. J. BELL ◽  
J. M. CLOY ◽  
C. F. E. TOPP ◽  
B. C. BALL ◽  
A. BAGNALL ◽  
...  

SUMMARYIncreasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1·19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1·74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.


Sign in / Sign up

Export Citation Format

Share Document