scholarly journals The Three-Dimensional Structure of the Biotin Carboxylase-Biotin Carboxyl Carrier Protein Complex of E. coli Acetyl-CoA Carboxylase

Structure ◽  
2013 ◽  
Vol 21 (4) ◽  
pp. 650-657 ◽  
Author(s):  
Tyler C. Broussard ◽  
Matthew J. Kobe ◽  
Svetlana Pakhomova ◽  
David B. Neau ◽  
Amanda E. Price ◽  
...  
1997 ◽  
Vol 327 (3) ◽  
pp. 847-851 ◽  
Author(s):  
Zengji LI ◽  
Yue SUN ◽  
L. David THURLOW

Twenty-one RNA minihelices, resembling the coaxially stacked acceptor- /T-stems and T-loop found along the top of a tRNA's three-dimensional structure, were synthesized and used as substrates for ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. The sequence of nucleotides in the loop varied at positions corresponding to residues 56, 57 and 58 in the T-loop of a tRNA. All minihelices were substrates for both enzymes, and the identity of bases in the loop affected the interaction. In general, RNAs with purines in the loop were better substrates than those with pyrimidines, although no single base identity absolutely determined the effectiveness of the RNA as substrate. RNAs lacking bases near the 5ʹ-end were good substrates for the E. coli enzyme, but were poor substrates for that from yeast. The apparent Km values for selected minihelices were 2-3 times that for natural tRNA, and values for apparent Vmax were lowered 5-10-fold.


1994 ◽  
Vol 302 (3) ◽  
pp. 881-887 ◽  
Author(s):  
A Chapman-Smith ◽  
D L Turner ◽  
J E Cronan ◽  
T W Morris ◽  
J C Wallace

A protein segment consisting of the C-terminal 87 residues of the biotin carboxy carrier protein from Escherichia coli acetyl-CoA carboxylase was overexpressed in E. coli. The expressed biotin-domain peptide can be fully biotinylated by coexpression with a plasmid that overproduces E. coli biotin ligase. The extent of biotinylation was limited in vivo, but could be taken to completion in cell lysates on addition of ATP and biotin. We used the coexpression of biotin ligase and acceptor protein to label the biotin-domain peptide in vitro with [3H]biotin, which greatly facilitated development of a purification procedure. The apo (unbiotinylated) form of the protein was prepared by induction of biotin-domain expression in a strain lacking the biotin-ligase-overproduction plasmid. The apo domain could be separated from the biotinylated protein by ion-exchange chromatography or non-denaturing PAGE, and was converted into the biotinylated form of the peptide on addition of purified biotin ligase. The identify of the purified biotin-domain peptide was confirmed by N-terminal sequence analysis, amino acid analysis and m.s. The domain was readily produced and purified in sufficient quantities for n.m.r. structural analysis.


2003 ◽  
Vol 185 (8) ◽  
pp. 2611-2617 ◽  
Author(s):  
Richard F. Collins ◽  
Robert C. Ford ◽  
Ashraf Kitmitto ◽  
Ranveig O. Olsen ◽  
Tone Tønjum ◽  
...  

ABSTRACT The PilQ secretin from the pathogenic bacterium Neisseria meningitidis is an integral outer membrane protein complex which plays a crucial role in the biogenesis of type IV pili. We present here the first three-dimensional structure of this type of secretin at 2.5-nm resolution, obtained by single-particle averaging methods applied to the purified protein complex visualized in a negative stain. In projection, the PilQ complex is circular, with a donut-like appearance. When viewed from the side it has a rounded, conical profile. The complex was demonstrated to have 12-fold rotational symmetry, and this property was used to improve the quality of the density map by symmetry averaging. The dominant feature of the structure is a cavity, 10 nm deep, within the center of the molecule. The cavity is funnel-shaped in cross section, measures 6.5 nm in diameter at the top of the complex, and tapers to a closed point, effectively blocking formation of a continuous pore through the PilQ complex. These results suggest that the complex would have to undergo a conformational change in order to accommodate an assembled pilus fiber of diameter 6.5 nm running through the outer membrane.


Nature ◽  
1994 ◽  
Vol 369 (6483) ◽  
pp. 761-766 ◽  
Author(s):  
R. H. Jacobson ◽  
X.-J. Zhang ◽  
R. F. DuBose ◽  
B. W. Matthews

Nature ◽  
1994 ◽  
Vol 367 (6459) ◽  
pp. 138-146 ◽  
Author(s):  
Christopher D. Lima ◽  
James C. Wang ◽  
Alfonso Mondragón

2013 ◽  
Vol 58 (6) ◽  
pp. 842-853 ◽  
Author(s):  
V. I. Timofeev ◽  
Yu. A. Abramchik ◽  
I. V. Fateev ◽  
N. E. Zhukhlistova ◽  
T. I. Murav’eva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document