Biotin Carboxyl Carrier Protein and Biotin Carboxylase Subunits of the Multi Subunit form of Acetyl CoA Carboxylase from Brassica Napus

Author(s):  
Kieran M. Elborough ◽  
Jonathan E. Markham ◽  
I. Marta Evans ◽  
Robert Winz ◽  
Andrew J. White ◽  
...  
Structure ◽  
2013 ◽  
Vol 21 (4) ◽  
pp. 650-657 ◽  
Author(s):  
Tyler C. Broussard ◽  
Matthew J. Kobe ◽  
Svetlana Pakhomova ◽  
David B. Neau ◽  
Amanda E. Price ◽  
...  

1996 ◽  
Vol 315 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Kieran M. ELBOROUGH ◽  
Robert WINZ ◽  
Ranjit K. DEKA ◽  
Jonathan E. MARKHAM ◽  
Andrew J. WHITE ◽  
...  

In the oilseed rape Brassica napus there are two forms of acetyl-CoA carboxylase (ACCase). As in other dicotyledonous plants there is a type I ACCase, the single polypeptide 220 kDa form, and a type II multi-subunit complex analogous to that of Escherichia coli and Anabaena. This paper describes the cloning and characterization of a plant biotin carboxyl carrier protein (BCCP) from the type II ACCase complex that shows 61% identity/79% similarity with Anabaena BCCP at the amino acid level. Six classes of nuclear encoded oilseed rape BCCP cDNA were cloned, two of which contained the entire coding region. The BCCP sequences allowed the assignment of function to two previously unassigned Arabidopsis expressed sequence tag (EST) sequences. We also report the cloning of a second type II ACCase component from oilseed rape, the β-carboxyltransferase subunit (βCT), which is chloroplast-encoded. Northern analysis showed that although the relative levels of BCCP and βCT mRNA differed between different oilseed rape tissues, their temporal patterns of expression were identical during embryo development. At the protein level, expression of BCCP during embryo development was studied by Western blotting, using affinity-purified anti-biotin polyclonal sera. With this technique a 35 kDa protein thought to be BCCP was shown to reside within the chloroplast. This analysis also permitted us to view the differential expression of several unidentified biotinylated proteins during embryogenesis.


2003 ◽  
Vol 185 (3) ◽  
pp. 938-947 ◽  
Author(s):  
Songkran Chuakrut ◽  
Hiroyuki Arai ◽  
Masaharu Ishii ◽  
Yasuo Igarashi

ABSTRACT Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an α4β4γ4 subunit structure. The optimum temperature for the enzyme was 60 to 70°C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent Km for acetyl-CoA was 0.17 ± 0.03 mM, with a V max of 43.3 ± 2.8 U mg−1, and the Km for propionyl-CoA was 0.10 ± 0.008 mM, with a V max of 40.8 ± 1.0 U mg−1. This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.


Sign in / Sign up

Export Citation Format

Share Document